Читаем Астрономия. Популярные лекции полностью

Утверждение, что поверхность Луны темная, обычно вызывает недоумение: на первый взгляд лунный диск выглядит очень ярким, безоблачной ночью он даже ослепляет нас. Но это лишь по контрасту с еще более темным ночным небом. Для характеристики отражающей способности любого тела используют величину под названием альбедо. Это степень белизны, то есть коэффициент отражения света. Альбедо, равное нулю, — абсолютная чернота, полное поглощение света. Альбедо, равное единице, — полное отражение. У физиков и астрономов есть несколько различных подходов к определению альбедо. Ясно, что яркость освещенной поверхности зависит не только от типа материала, но и от его структуры и ориентации относительно источника света и наблюдателя. Например, пушистый свежевыпавший снег имеет одно значение коэффициента отражения, а снег, в который вы наступили ботинком, — совсем другое. А зависимость от ориентации легко продемонстрировать зеркальцем, пуская солнечных зайчиков. Точное определение альбедо различного типа дано в главе «Краткий справочник» (см. Альбедо). Знакомые поверхности с разным альбедо — бетон и асфальт. Освещенные одинаковыми потоками света, они демонстрируют разную визуальную яркость: у свежевымытого асфальта альбедо около 10 %, а у чистого бетона — около 50 %.

Рис 4.4. Альбедо — доля солнечного света, отраженная поверхностью. Показан диапазон значений альбедо типичных поверхностей на Земле, а также альбедо Бонда некоторых космических тел.


Весь диапазон возможных значений альбедо перекрыт известными космическими объектами. Скажем, Земля отражает около 30 % солнечных лучей, в основном благодаря облакам, а сплошной облачный покров Венеры отражает 77 % света. Наша Луна — одно из самых темных тел, в среднем отражающее около 11 % света, а ее видимое полушарие из-за наличия обширных темных «морей» отражает свет еще хуже — менее 7 %. Но встречаются и еще более темные объекты — например, астероид 253 Матильда с его альбедо в 4 %. С другой стороны, есть удивительно светлые тела: спутник Сатурна Энцелад отражает 81 % видимого света, а его геометрическое альбедо просто фантастическое — 138 %, т. е. он ярче идеально белого диска такого же сечения. Даже трудно понять, как ему это удается. Чистый снег на Земле и то хуже отражает свет; какой же снег лежит на поверхности маленького и симпатичного Энцелада?

Тепловой баланс

Температура любого тела определяется балансом между притоком к нему тепла и его потерями. Известны три механизма обмена теплом: излучение, теплопроводность и конвекция. Два последних процесса требуют прямого контакта с окружающей средой, поэтому в космическом вакууме важнейшим и, по сути, единственным становится первый механизм — излучение. Для конструкторов космической техники это создает немалые проблемы. Им приходится учитывать несколько источников тепла: Солнце, планету (особенно на низких орбитах) и внутренние агрегаты самого космического аппарата. А для сброса тепла есть лишь один способ — излучение с поверхности аппарата. Для поддержания баланса тепловых потоков конструкторы космической техники регулируют эффективное альбедо аппарата с помощью экранно-вакуумной изоляции и радиаторов. Когда такая система дает сбой, условия в космическом корабле могут стать весьма некомфортными, о чем напоминает нам история экспедиции «Аполлон-13» к Луне.

Рис 4.5. Огюст Пикар готовится к полету на стратостате FNRS-1 (1931 г.)


Рис 4.6. Экипаж стратостата «Explorer II» (1935 г.)


Но впервые с этой проблемой столкнулись еще в первой трети XX в. создатели высотных аэростатов — так называемых стратостатов. В те годы еще не умели создавать сложные системы терморегулирования герметичной гондолы, поэтому ограничивались простым подбором альбедо ее внешней поверхности. Насколько чувствительна температура тела к его альбедо, говорит история первых полетов в стратосферу. Швейцарец Огюст Пикар покрасил гондолу своего стратостата FNRS-1 с одной стороны в белый, а с другой — в черный цвет. Предполагалось регулировать температуру в гондоле, поворачивая сферу той или иной стороной к Солнцу: для этой цели снаружи установили пропеллер. Но устройство не заработало, солнце светило с «черной» стороны, и внутренняя температура в первом полете поднялась до +38 °C. В следующем полете всю капсулу просто покрыли серебряной краской для отражения солнечных лучей. Внутри стало минус 16 °C.

Рис 4.7. Энцелад — спутник Сатурна, обладающий чрезвычайно высоким альбедо. Фото зонда «Кассини» (NASA).


Перейти на страницу:

Похожие книги

Воображаемая жизнь (ЛП)
Воображаемая жизнь (ЛП)

Книга 2019 года, в которой двое учёных (профессор физики и профессор астрономии) предлагают читателю совершить воображаемое путешествие по экзопланетам различных типов в поисках жизни на них. Охарактеризованы планеты различных типов - полностью замороженные, водные, с повышенной силой тяжести, в приливном захвате, и т. д. Для каждого типа экзопланет анализируется возможность возникновения жизни, наиболее вероятные места её возникновения и пути её эволюции. Также авторы касаются проблемы жизни в целом, законов природы, которые отвечают за формирование планет и их среды. Отдельные главы книги посвящены анализу возможности возникновения "нестандартных" видов жизни - на основе иных элементов (не углерода), неорганической и искусственной жизни. Книга рассчитана на широкий круг читателей.

Джеймс Трефил , Майкл Саммерс

Астрономия и Космос / Образование и наука
Космическая академия
Космическая академия

В книге освещена малоизвестная для широкого круга читателей область космонавтики, связанная с отбором, обучением, психологической, летной и инженерной подготовкой космонавтов. Отражены практически все направления сложившейся за последние 23 лет системы подготовки космонавтов. Книга даст ясное представление о том, как воспитываются и формируются профессиональные специалисты высокого класса. Последовательно раскрыты этапы становления личности космонавта, начиная с отбора кандидатов в космонавты, прохождения ими общекосмической подготовки с привлечением различных технических средств.Для широкого круга читателей.

Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский

Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука