Так, только волновая, колебательная трактовка объясняет тот факт, что для нелинейного фотоэффекта существует зависимость величины фототока от направления поляризации падающего света, совсем как в селективном фотоэффекте (§ 4.4). Раз преобразование излучения во вторую гармонику — это обычный нелинейный волновой эффект, протекающий в веществе (любое вещество в сильных лазерных полях становится нелинейной средой), то излучение должно прежде проникнуть в среду. А это, как видели, возможно лишь для света с продольной поляризацией, проникающего в толщу металла и выбивающего электроны уже не только с поверхности. Действительно, свет высокой интенсивности, даже при сильном затухании, способен сравнительно глубоко проникать в металл. Интенсивный свет, прошедший в глубь металла, и создаёт нелинейные эффекты. Удвоение частоты может происходить как в объёме металла, так и в отдельных его кристаллах, ориентированных случайным образом, в том числе, — таким, который обеспечивает выполнение условия синхронизма и эффективное преобразование первой гармоники во вторую. Итак, прозрачность металла — вещь относительная. Вдобавок в сильных лазерных полях, за счёт эффекта просветления среды, даже непрозрачная среда может стать отчасти прозрачной. Именно это позволило, в своё время, создать полупроводниковые лазеры, хотя полупроводники непрозрачны для света и во многом сходны по свойствам с металлами, что, как полагали кванторелятивисты, делает полупроводник непригодным в качестве активной среды лазера (§ 4.9). Таким образом, фотоэффект, часто называемый "многофотонным", гораздо правильней называть "нелинейным", как у Ландсберга [74]. Нелинейный фотоэффект — это чисто волновое, колебательное, классическое явление, относящееся к нелинейной оптике.
§ 4.6 Обратный фотоэффект, фотоионизация и солнечные батареи
Широко используется в практических целях так называемый внутренний фотоэффект, при котором, в отличие от внешнего, оптически возбуждённые электроны остаются внутри освещённого тела, не нарушая нейтральности последнего… Происходит пространственное разделение внутри объёма проводника оптически возбуждённых электронов и микрозон (дырок), возникающих в непосредственной близости от атомов, от которых оторвались электроны… Таким образом достигается прямое преобразование световой энергии в электрическую.
Последняя разновидность фотоэффекта — обратный фотоэффект: генерация металлом излучения при обстреле его поверхности электронами энергии