Осталось выяснить, почему стабильным оказывается и гаммон, — частица с массой в 66 электронных. Если дело в устойчивости кристаллической структуры, то причина, возможно, в близости 66 к 64=43
. Иными словами, 64 частицы составляют куб с ребром в 4 частицы. И он тоже будет стабильным, поскольку электроны и позитроны стали бы в нём чередоваться, словно положительные и отрицательные ионы в кубическом кристалле соли (Рис. 119). Таким образом, гаммон должен состоять из 32-х электронов и 32-х позитронов. Правда, непонятно, откуда берутся в гаммоне две дополнительные единицы массы. Но, учитывая, что масса его рассчитана теоретически, а не измерена в опыте, вполне может статься, что реальная масса — именно 64. К тому же, надо учесть, что взаимодействие электронов и позитронов, их сближение и движение отдельных частиц может приводить к неточному измерению их общей массы (§ 3.18).Рис. 119. Строение октона и гаммона, составленных из чередующихся электронов и позитронов
.
Раз мюоны и пионы — составные, то все прочие частицы, представленные их наборами, можно представить и в виде сочетаний более простых частиц. Поэтому, пользуясь прежними таблицами (Таблица 2 и Таблица 3, учтённые в колонке I
) и тем, что μ=3Г+О, π0=4Г, а π—= 4Г+О, можно нарисовать более полную и точную картину микромира (Таблица 4), изображая все частицы в виде наборов гаммонов и октонов (колонка II). В таком представлении минусовые массы окончательно исчезают. Так, K+-мезон состоит из 14 гаммонов и 5 октонов, что даёт для него M= 66·14+8·5= 964 (реально M= 966). K0-мезон построен из 14 гаммонов и 6 октонов, откуда M=66·14+8·6= 972 (реально M= 974). Неточность возникает от округления масс гаммона и октона до ближайшего целого числа и неучтённых масс электронов и позитронов, дополняющих комбинацию. Но грубо массу любой частицы можно искать по формуле M=66x+8у, где x и y — это числа гаммонов и октонов в частице.Итак, все типы частиц можно представить в виде сочетания двух основных: гаммонов Г (с M
=66) и октонов О (с M=8–9), дополненных иногда, для баланса заряда, электроном или позитроном. Существование гаммонов подтверждают реакции распада пионов, где бесследно исчезает масса, кратная 66 (Рис. 116). А реальность октонов следует из распада мюонов и того, что в семействах частиц (Таблица 4, выделены серым) массы M разнятся в среднем как раз на 8,5 единиц. Похоже, гаммоны и октоны, подобно нуклонам в ядре, выстраиваются в некие пространственные структуры, что объясняет стабильность одних частиц и нестабильность других. Мерой стабильности будет, как везде, степень симметрии, совершенства частицы, близости её к правильным геометрическим телам [21]. Частицы, структура которых несовершенна, — нестабильны и быстро распадаются. Так, и в природе: прочнее всего, тела, имеющие совершенную, кристаллическую форму. Менее прочны кристаллы с дефектами структуры. Наконец, наименее прочны аморфные тела. Всё это хорошо видно на примере кварца, кварцевого стекла и обычного стекла.Более стабильны сочетания, в которых число частиц равно кубу или квадрату целого числа (Рис. 120). Взять, к примеру, гаммоны или октоны, построенные, соответственно, из 64 и 8 частиц. Так же, и пионы, состоящие из 4-х гаммонов, образующих квадрат 2x2, живут заметное по меркам микромира время. По той же причине, достаточно стабилен η-мезон, составленный из 4x4=16 гаммонов. Наиболее симметричен протон: в нём 27=33
гаммонов. Поэтому протон — одна из немногих стабильных частиц. Другая частица, у которой число гаммонов равно кубу, — это Λ+-гиперон: 64=43 (Таблица 5). Вот почему эта частица, несмотря на большую массу, при которой стабильность обычно мала, обладает, всё же, заметным временем жизни.Рис. 120. Возможная структура элементарных частиц, состоящих из гаммонов, в свою очередь образованных электронами и позитронами.