Как же возникает геометрически точная кристаллическая форма атомов, ядер и частиц? Разве не должна материя собираться под действием сил притяжения в компактные капли-шарики, какими любят представлять частицы? Природа их геометрически чёткой формы та же, что у кристаллов, правильные грани которых когда-то тоже удивляли людей. Видно, форма кристаллов и подсказала Платону идею частиц-многогранников (§ 5.3). Ровные плоские грани кристаллов возникают оттого, что они построены из одинаковых упорядоченно сложенных частиц, атомов. Правильное размещение частиц обеспечивает минимум энергии связи, к которому стремятся все системы. Атомам энергетически выгодней не надстраивать атомную плоскость, а дополнять атомные слои до ровных, контактируя с возможно большим числом соседей. Так и возникают правильные многогранные формы кристаллов.
Если атомы, ядра и элементарные частицы и впрямь имеют структуру кристаллов, то и они должны быть составлены из множества однотипных упорядоченно расположенных частиц. И, точно, атом, как выяснили, сложен из ядра и электронов, образующих правильные конфигурации — слои, уровни, задающие чёткую структуру таблицы Менделеева (§ 3.3). Ядро, в свою очередь, образовано из протонов и нейтронов, расположенных так же упорядоченно, что подтверждают магические числа протонов и нейтронов, образующих особо стабильные ядра (§ 3.6). Наконец, сами протоны, нейтроны и прочие элементарные частицы — вовсе не элементарны, раз могут распадаться. Они образованы другими однотипными частицами, — электронами и позитронами, опять же сложенными в виде чёткой решётки. Проверить, так ли всё это на самом деле, можно с помощью метода, аналогичного рентгенографии обычных кристаллов. Направляя на одинаково сориентированные атомы, ядра и частицы пучок гамма-лучей с длиной волны порядка межэлектронного расстояния (10–15
м), удастся выявить по методу Лауэ дифракцию гамма-лучей на расположенных в правильном порядке элементарных частицах. Если на фотоплёнке возникнет дифракционная картина, то это докажет реальность кристаллического строения частиц. Изучая полученную лауэграмму, можно будет также точно рассчитать, как именно и на каком расстоянии расположены элементарные частицы, образующие более крупные кристаллические комплексы.Итак, именно геометрический, пространственный подход открывает истинную структуру элементарных частиц и позволяет понять многие их свойства. А квантовый подход — слишком сложен, условен, формален и совершенно не отражает реального устройства частиц. Такой кристаллический подход к строению и распаду частиц мог быть развит ещё век назад первым исследователем радиоактивности — Пьером Кюри. Именно Кюри как химик и физик много сделал для понимания свойств кристаллов и вскрыл важную роль симметрии. Кроме того, будучи исследователем атомного магнетизма и коллегой П. Вейсса, Кюри, наверняка бы принял кристаллическую магнитную модель атома Ритца и мог однажды приложить эти знания к объяснению распадов ядер. Но Кюри погиб в 1906 г. от несчастного случая в возрасте 46 лет, и развитие структурного, кристаллического подхода к радиоактивности задержалось на век. Лишь сейчас к учёным постепенно приходит понимание огромной роли геометрической структуры частиц и ядер. А, ведь, ещё в Древней Греции Платон и Пифагор осознали большое значение геометрии и правильных геометрических тел для познания микромира. На фоне нынешних учёных, одурманенных бесструктурной теорией относительности и квантовой физикой, даже эти древние греки выглядят не мистиками, а последовательными материалистами.
§ 3.1 °Cистематизация и периодический закон элементарных частиц
Главный интерес химии — в изучении основных качеств элементов. А так как их природа нам ещё вовсе неизвестна и так как для них мы поныне твёрдо знаем только два измеряемые свойства: способность давать известные формы соединения и их свойство, называемое весом атома, то остаётся только один путь к основательному с ними ознакомлению — это путь сравнительного изучения элементов на основании этих двух свойств.