Читаем Базовый курс: операторское искусство. Учимся снимать на плёнку и цифру полностью

Кинокамеры записывают изображения так же, как фотокамеры, только делают это гораздо чаще. Камеры с 8-миллиметровой пленкой обычно снимают восемнадцать разных картинок – кадров – в секунду. Камеры с 16-миллиметровой и 35-миллиметровой пленкой снимают по 24 кадра в секунду. Когда эти картинки проецируются на экран в том же темпе, они создают иллюзию непрерывного движения. Мозг зрителя заполняет пробелы между отдельными кадрами благодаря особенности физиологии человека, известной как инерция зрительного восприятия.



В цифровых камерах, будь то фото или видео, объектив фокусирует световые картинки на светочувствительной матрице – либо CCD-матрице (прибор с зарядовой связью'), либо CMOS-матрице (комплементарная структура металл – оксид – полупроводник)

[5]. На поверхности матрицы находится от нескольких тысяч до нескольких миллионов крошечных светочувствительных зон, именуемых элементами изображения, или пикселями, которые меняются в зависимости от цвета и насыщенности поступающего на них света. В видеокамерах изображение, создаваемое благодаря объединению всех пикселей, электронным образом считывается с матрицы со скоростью 25 или 30 полных изображений в секунду. Затем эти изображения записываются или транслируются (см. рисунок на следующей странице).

В видоискателе и в телевизоре данный процесс протекает в обратном порядке, благодаря чему и воссоздается первоначальное изображение. Благодаря инерции зрения зритель воспринимает последовательность отдельных картинок (кадров) как постоянное движение.


Экопозиция

Экспозиция – это то количество света, которое проходит через объектив и попадает на пленку либо на CCD-матрицу. Отверстие в центре объектива, через которое и проходит свет, называется диафрагмой. Чем больше отверстие диафрагмы, тем больше света через нее проходит. Если отверстие небольшое, то и света диафрагма пропускает очень мало. Диаметр отверстия регулируется с помощью шкалы диафрагмы, опоясывающей объектив. Ее деления – попросту единицы измерения, позволяющие оценить, насколько велико или мало раскрытие диафрагмы.

Я считаю, самый простой способ понять, что из себя представляет шкала диафрагмы, – считать ее деления своего рода долями, поскольку именно долями они на деле и являются. Отметка f/2 означает, что диаметр диафрагмы составляет 1/2 от длины объектива. F/16 означает, что диаметр диафрагмы составляет 1/16 от длины объектива.



Если рассматривать шкалу диафрагмы с такой позиции, легко можно понять, почему в темной комнате вы, скорее всего, будете снимать на отметке f/2, чтобы в объектив проникало как можно больше света. И напротив, оказавшись на ярком солнце, когда вокруг так много света, вы, скорее всего, прокрутите кольцо до отметки f/11 или f/16, чтобы в объектив попадало меньше света.

Теперь, когда вы с этим разобрались, позвольте отметить, что для большинства современных объективов, особенно объективов с зумом, то, что я вам только что рассказал, не всегда является абсолютной правдой. Диаметр отверстия диафрагмы на отметке f/2 физически не будет составлять ровно 1/2 длины объектива. Но оптически – будет. Диафрагма будет пропускать столько же света, сколько пропускала бы, если бы ее диаметр и в самом деле составлял 1/2 длины объектива. И это самое главное.

Отметки шкалы диафрагмы организованы таким образом, что можно дойти от f/1 до f/22 и дальше, причем на каждой последующей отметке в объектив будет проникать в два раза меньше света, чем на предыдущей. Последовательность такова: f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, f/32, f/45, f/64 и так далее. На отметке f/1.4 в объектив поступает в два раза меньше света, чем на отметке f/1. На отметке f/4 света поступает в два раза меньше, чем на отметке f/2.8.



На многих объективах последних моделей есть не только f-шкала, но и Т-шкала, а иногда только Т-шкала. Т-шкала представляет собой более точное измерение долей f-шкалы. На одной и той же отметке, скажем, f/4, два разных объектива будут пропускать не совсем равное количество света, а вот отметка Т/4 одинакова для всех объективов. На этой отметке в объектив будет попадать одно и то же количество света независимо от его модели.

Цветовая температура

Перейти на страницу:

Похожие книги

Архитектура видеоигровых миров. Уровень пройден!
Архитектура видеоигровых миров. Уровень пройден!

Почему видеоигровые миры увлекают на долгие часы? Какие элементы дизайна могут рассказать об устройстве мира больше, чем сюжет игры? Что общего у Cyberpunk 2077 и Dragon Age II?В книге «Архитектура видеоигровых миров» авторы изучат эти вопросы сквозь призму архитектуры: как она влияет на разработку игр, почему в одних мирах нам хочется задержаться подольше, а другие поскорее покинуть. Первое, что можно увидеть, запуская игру, – окружающее пространство. Чтобы выстроить его правильно, нужно обладать наблюдательностью, пониманием человеческого быта и широким кругозором, ведь то, что доставляет человеку удобство и комфорт в реальной жизни, может не сработать в виртуальном пространстве. Но даже в этом случае разработчики всегда находят способ удивить игрока. Как это происходит?Архитектор Мария Важенич в соавторстве с разработчиком Артемием Козловым и исследователем Иеронимом К. помогут разобраться в том, почему архитектура настолько важна для видеоигр. Книга будет интересна как архитекторам и геймерам, которые хотят узнать о видеоиграх больше, так и разработчикам и дизайнерам, ищущим новые инструменты и приемы.В качестве дополнительного материала к книге прилагается цифровой альбом со скриншотами игр, который можно посмотреть при помощи QR-кодов, расположенных в начале каждой главы.

Артемий Викторович Козлов , К. Иероним , Мария Важенич

Хобби и ремесла