Основная теорема анализа стала кульминацией восемнадцати веков развития математической мысли. С помощью динамических средств она ответила на статический геометрический вопрос, который Архимед мог задавать в Древней Греции в 250 году до нашей эры, или Лю Хуэй в Китае в 250 году, или ибн аль-Хайсам в Каире в 1000-м, или Кеплер в Праге в 1600-м.
Рассмотрим фигуру, подобную серой области на приведенном рисунке.
Есть ли способ точно вычислить площадь такой произвольной формы, как показанная на рисунке, учитывая, что кривая, ограничивающая ее сверху, может быть почти произвольной? В частности, это не обязательно должна быть классическая кривая. Это может быть некая экзотическая кривая, определяемая каким-нибудь уравнением на координатной плоскости – в джунглях, открытых Ферма и Декартом. А что, если эта кривая определена каким-то физическим процессом, например траекторией двигающейся частицы или луча света? Существует ли какой-то способ находить площадь под такой кривой и делать это системным образом? Такова задача площади
– третья центральная задача анализа, о которой я упоминал ранее, и самая насущная математическая задача середины 1600-х годов. Это была последняя неразгаданная загадка кривых. Исаак Ньютон подошел к ней с новой стороны, используя идеи, подсказанные загадками движения и изменения.Исторически единственный шанс решить такие задачи сводился к поиску какого-то хитроумного способа разрезать криволинейную область на полоски или разбить на осколки, а затем пересобрать эти кусочки в уме или взвесить на воображаемых качелях, как это делал Архимед. Однако примерно в 1665 году Ньютон впервые совершил крупный прорыв в решении этой задачи за почти за два тысячелетия. Он объединил идеи исламской алгебры и французской аналитической геометрии, но пошел гораздо дальше.
Согласно его новой системе, первый шаг состоял в том, чтобы отразить нужную область на координатной плоскости и определить уравнение, которое описывает верхнюю кривую, ограничивающую область. Для этого требовалось вычислить, насколько выше оси x
расположена эта кривая, то есть для каждого значения x получить соответствующее значение y (как показано на рисунке выше пунктирной линией). Такое вычисление преобразовывало кривую в уравнение, связывающее x и y, что позволяло применять инструменты алгебры. Тридцатью годами ранее Ферма и Декарт уже поняли это и использовали такие методы для поиска касательных к кривым, что само по себе было большим достижением.Но они упускали из виду тот факт, что сами по себе касательные не так уж важны. Куда важнее угловые коэффициенты
, отражающие их наклоны, поскольку именно они привели к понятию производной. Как мы видели в предыдущей главе, производные естественным образом возникают в геометрии как наклоны кривых. Производные также возникают в физике как другой вид изменений, например скорость. Таким образом, производные представляются связующим звеном между наклонами и скоростями и, более широко, между геометрией и движением. Как только идея производной прочно обосновалась в голове Ньютона, ее способность перебросить мост между геометрией и движением привела к окончательному успеху. Именно производная наконец разрешила задачу площади.Глубоко скрытые связи между этими идеями – наклоны и площади, кривые и функции, скорость изменения и производные – вышли из тени, когда Ньютон взглянул на них с динамической точки зрения. Поразмышляйте над приведенным выше графиком и представьте, что x
двигается направо с постоянной скоростью. Вы можете даже думать об x как о времени: Ньютон часто так и делал. По мере движения x площадь серой области непрерывно меняется. Поскольку она зависит от x, ее следует рассматривать как функцию от x, так что запишем ее в виде A(x). Когда мы хотим подчеркнуть, что эта площадь является функцией x (в противопоставление фиксированному числу), мы будем называть ее функцией накопления площади, а иногда просто функцией площади.Мой преподаватель анализа в старших классах, мистер Джоффри, предлагал яркую запоминающуюся метафору для этого «текучего» сценария, когда x
скользит, а вместе с ним меняется площадь. Он просил нас представить волшебный малярный валик, который движется по горизонтали. Двигаясь вправо, он окрашивает в серый цвет участок под кривой.
Пунктирная линия в точке x
обозначает текущее положение этого воображаемого малярного валика, пока он двигается вправо. При этом для гарантии аккуратного окрашивания валик мгновенно каким-то волшебным образом растягивается или сжимается в вертикальном направлении – в точности от кривой вверху до оси x внизу, но их не пересекая. Волшебство тут в том, что валик при движении всегда меняет свою длину до величины y(x), чтобы безукоризненно окрашивать площадь нужной фигуры.