Это позволило бы справиться не только с этими, но и с другими задачами. Решение такой задачи сделало бы возможным прогнозирование положения двигающихся объектов – например, где окажется планета в определенной точке своей орбиты, даже если планета подвергается какой-то другой силе притяжения, отличной от действующей в нашей Вселенной. Вот что я имею в виду, называя эту задачу святым Граалем, заветной мечтой интегрального исчисления. Ее решение привело бы к устранению множества других проблем.
Вот почему так важно умение находить площадь под произвольной кривой. Из-за своей тесной связи с обратной задачей задача площади касается не только площадей. Она относится не только к формам, соотношениям между расстоянием и скоростью или таким же узким вещам. Это совершенно общая вещь. С современной точки зрения задача площади относится к прогнозированию взаимоотношений между всем, что меняется с переменной скоростью, и накапливающимся во времени результатом таких изменений. Это переменный приход денег на банковский счет и накопленная сумма на нем. Это темпы роста мирового населения и общая численность людей на планете. Это изменение концентрации химиотерапевтического препарата в крови пациента и накопленное воздействие этого препарата со временем. Это влияет на то, насколько эффективной или токсичной будет химиотерапия. Площадь важна, потому что важно будущее.
Новая математика Ньютона идеально подходила для меняющегося мира. Соответственно, он и образовал новые термины от слова
1. Даны флюэнты, как найти их флюксии?
2. Это эквивалентно упомянутой ранее прямой задаче – легкой задаче нахождения наклона кривой или, в более общем виде, нахождению скорости изменения или производной для известной функции. Такая процедура сегодня называется
3. Даны флюксии, как найти их флюэнты?
4. Это эквивалентно обратной задаче и представляет собой ключ к решению задачи площади. Это сложная задача нахождения кривой по ее наклону или, в более общем виде, нахождения неизвестной функции по скорости ее изменений (по ее производной). Такая процедура сегодня известна как
Вторая задача намного сложнее первой. Кроме того, она гораздо важнее для прогнозирования будущего и проникновения в код Вселенной. Прежде чем мы посмотрим, как далеко удалось зайти Ньютону, я попробую объяснить, почему она так сложна.
Причина, по которой интегрирование намного сложнее дифференцирования, связана с различием между локальным и глобальным. Локальные задачи простые, глобальные – сложные.
Дифференцирование – это локальная операция. Как мы уже видели, когда вычисляем производную, это похоже на вид под микроскопом. Мы увеличиваем участок кривой или функции в поле зрения. По мере увеличения на этом участке кривая становится все менее и менее изогнутой. Мы видим ее масштабированную версию – крохотный наклонный пандус-скат с приращением по вертикали Δ
Интегрирование – это глобальная операция. Вместо микроскопа мы используем телескоп. Мы пытаемся вглядеться вдаль – или далеко вперед, хотя в этом случае нам нужен хрустальный шар. Естественно, такие задачи гораздо сложнее. Все мешающие события имеют значение и не могут быть отброшены. По крайней мере, так кажется.