Читаем Биология. В 3-х томах. Т. 3 полностью

Аутополиплоидия может возникать как естественным, так и искусственным путем в результате увеличения числа хромосомных наборов у данного вида. Например, если произойдет репликация хромосом (в интерфазе) и хроматиды нормально разойдутся в (анафазе), но цитоплазма не разделится, то образуется тетраплоидная (4n) клетка с большим ядром. Такая клетка затем делится и дает тетраплоидные дочерние клетки. Количество цитоплазмы в этих клетках возрастает, чтобы сохранилось постоянство ядерно-плазменного отношения, и это ведет к увеличению общих размеров растения или какой-либо его части. Аутополиплоидизацию можно вызвать с помощью алкалоида колхицина

, выделяемого из клубнелуковицы безвременника (Colchicum). В концентрации порядка 0,01% колхицин подавляет образование веретена деления, разрушая микротрубочки, так что хромосомы не расходятся во время анафазы. Колхицин и близкие к нему вещества использовали для выведения определенных сортов хозяйственно ценных культур, таких как табак, томаты и сахарная свекла. Аутополиплоиды обычно менее плодовиты, чем диплоиды, так как во время мейоза гомологичные хромосомы должны объединяться более чем по две.

У животных иногда наблюдается видоизмененная форма полиплоидии, при которой образуются отдельные полиплоидные клетки и ткани. Это обычно происходит при удвоении хромосом, не сопровождающемся разделением клетки. Гигантские хромосомы в клетках слюнных желез дрозофилы возникают в результате многократной репликации ДНК без перехода к митозу.

Аллополиплоидией называют удвоение числа хромосом у стерильного гибрида, в результате чего он становится плодовитым. Гибриды F1? получаемые при скрещиваниях между разными видами, обычно стерильны, так как их хромосомы не могут образовать гомологичные пары во время мейоза. Если, однако, число хромосом становится кратным исходному гаплоидному их числу, например равным 2(n1 + n2), 3(n1 + n2) и т.д. (где n1 и n2-гаплоидные числа хромосом у родительских видов), то возникает новый вид, который дает плодовитых гибридов при скрещивании с такими же полиплоидами, но стерилен при скрещивании с любым из родительских видов.

Для большинства аллополиплоидных видов характерно диплоидное число хромосом, которое представляет собой сумму диплоидных чисел их родительских видов; например, Spartina anglica

(2n = 122)-плодовитый гибридный аллополиплоид, полученный в результате скрещивания Spartina maritima (stricta) (In = 60) со Spartina alterniflora (2n = 62). (Гибрид F1
от скрещивания между этими двумя видами стерилен и получил название Spartina townsendii.) Большинство аллополиплоидных растений отличается по своим признакам от обоих родительских видов; к ним относятся многие из весьма ценных культур, выращиваемых человеком. Например, вид пшеницы Triticum aestivum (2n = 42), из которого получают муку, был выведен путем скрещивания и отбора за 5000 лет. В результате скрещивания дикорастущей пшеницы-однозернянки (2n = 14) с неидентифицированным диплоидом (2n = 14) был получен новый вид пшеницы-эммер (2n = 28). Пшеница эммер скрещивалась еще с одним дикорастущим диплоидным видом (2n = 14), в результате чего получилась форма Triticum aestivum
(2n = 42), которая представляет собой гексаплоид (6п) первоначальной пшеницы-однозернянки. Другой пример межвидовой гибридизации — скрещивание редьки с капустой — будет описан в разд. 25.9.

У животных аллополиплоидия почти неизвестна, так как у них межвидовые скрещивания происходят редко. В результате полиплоидии генофонд не получает новых генов (см. разд. 25.1.1), но создаются новые генные комбинации.

Структурные изменения хромосом (хромосомные перестройки)

При кроссинговере во время профазы I мейоза происходит реципрокный обмен генетическим материалом между гомологичными хромосомами. Это ведет к изменению последовательности аллелей в родительских группах сцепления, и в результате получаются рекомбинанты, но без потери каких-либо генных локусов. Сходные эффекты возникают при таких хромосомных перестройках, как инверсии и транслокации. При перестройках других типов — делециях и дупликациях — число генных локусов в хромосомах изменяется, и это может оказать глубокое влияние на фенотипы. Структурные изменения в хромосомах, связанные с инверсиями, делециями, дупликациями, а в некоторых случаях и транслокациями, можно наблюдать под микроскопом, когда в профазе I мейоза гомологичные хромосомы приступают к конъюгации. Гомологичные хромосомы конъюгируют (см. разд. 22.3), а в тех участках, которые затронула перестройка, одна из гомологичных хромосом образует петлю или же перекручивается. Какая из хромосом образует петлю и как расположатся ее гены, зависит от типа перестройки.

Перейти на страницу:

Похожие книги

Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука
Энергия, секс, самоубийство. Митохондрии и смысл жизни
Энергия, секс, самоубийство. Митохондрии и смысл жизни

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной. Они позволяют понять, как возникли первые сложные клетки и как земная жизнь взошла по лестнице восходящей сложности к вершинам славы. Они показывают нам, почему возникли теплокровные существа, стряхнувшие оковы окружающей среды; почему существуют мужчины и женщины, почему мы влюбляемся и заводим детей. Они говорят нам, почему наши дни в этом мире сочтены, почему мы стареем и умираем. Они могут подсказать нам лучший способ провести закатные годы жизни, избежав старости как обузы и проклятия. Может быть, митохондрии и не объясняют смысл жизни, но, по крайней мере, показывают, что она собой представляет. А разве можно понять смысл жизни, не зная, как она устроена?16+

Ник Лэйн

Биология, биофизика, биохимия / Биология / Образование и наука
Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука