Основу современной эволюционной теории, которую называют неодарвинизмом или синтетической теорией эволюции, составляет изучение популяционной генетики. Гены, действуя независимо или совместно с факторами среды, определяют фенотипические признаки организмов и обусловливают изменчивость в популяциях. Фенотипы, приспособленные к условиям данной среды или "экологическим рамкам", сохраняются отбором, тогда как неадаптивные фенотипы подавляются и в конце концов элиминируются. Естественный отбор, влияя на выживание отдельных особей с данным фенотипом, тем самым определяет судьбу их генотипа, однако лишь
25.1.1. Генофонд
Генофонд слагается из всего разнообразия генов и аллелей, имеющихся в популяции, размножающейся половым путем; в каждой данной популяции состав генофонда из поколения в поколение может постоянно изменяться. Новые сочетания генов образуют уникальные генотипы, которые в своем физическом выражении, т. е. в форме фенотипов, подвергаются давлению факторов среды, производящим непрерывный отбор и определяющим, какие гены будут переданы следующему поколению.
Популяция, генофонд которой непрерывно изменяется из поколения в поколение, претерпевает эволюционное изменение. Статичный генофонд отражает отсутствие генетической изменчивости среди особей данного вида и отсутствие эволюционного изменения.
25.1.2. Частоты аллелей
Любой физический признак, например окраска шерсти у мышей, определяется одним или несколькими генами. Каждый ген может существовать в нескольких различных формах, которые называют аллелями
(см. табл. 23.2). Число организмов в данной популяции, несущих определенный аллель, определяет частоту данного аллеля (которую иногда называют частотой гена, что менее точно). Например, у человека частота доминантного аллеля, определяющего нормальную пигментацию кожи, волос и глаз, равна 99%. Рецессивный аллель, детерминирующий отсутствие пигментации — так называемый альбинизм, — встречается с частотой 1%. В популяционной генетике частоту аллелей или генов чаще выражают не в процентах или простых дробях, а в десятичных дробях. Таким образом, в данном случае частота доминантного аллеля равна 0,99, а частота рецессивного аллеля альбинизма — 0,01. Общая частота аллелей в популяции составляет 100%, или 1,0, поэтомуКак это принято в классической генетике, аллели можно обозначить буквами, например доминантный аллель (нормальная пигментация) — буквой N, а рецессивный (альбинизм) — буквой n. Для приведенного выше примера частота N = 0,99, а частота n = 0,01.
Популяционная генетика заимствовала у математической теории вероятностей два символа, р и q, для выражения частоты, с которой два аллеля, доминантный и рецессивный, встречаются в генофонде данной популяции. Таким образом,
p + q= 1,
где:
р-частота доминантного, а q-частота рецессивного аллеля.
В примере с пигментацией у человека р = 0,99, а q = 0,01;
Р + q = 1
0,99 + 0,01 = 1
Значение этого уравнения состоит в том, что, зная частоту одного из аллелей, можно определить частоту другого. Пусть, например, частота рецессивного аллеля равна 25%, или 0,25. Тогда
Р + q = 1
р + 0,25 = 1
р = 1-0,25
р = 0,75
Таким образом, частота доминантного аллеля равна 0,75, или 75%.
25.1.3. Частота генотипов
Частоты отдельных аллелей в генофонде позволяют вычислять генетические изменения в данной популяции и определять частоту генотипов. Поскольку генотип данного организма — главный фактор, определяющий его фенотип, вычисление частоты генотипа используют для предсказания возможных результатов тех или иных скрещиваний. Это имеет важное практическое значение в сельском хозяйстве и медицине.
Математическая зависимость между частотами аллелей и генотипов в популяциях была установлена в 1908 г. независимо друг от друга английским математиком Дж. Харди и немецким врачом В. Вайнбергом. Эту зависимость, известную под названием равновесия Харди Вайнберга
, можно сформулировать так:1) размеры популяции велики;
2) спаривание происходит случайным образом;
3) новых мутаций не возникает;
4) все генотипы одинаково плодовиты, т.е. отбора не происходит;
5) поколения не перекрываются;