Ре'зкость фотографи'ческого изображе'ния,
степень отчётливости границы между двумя участками фотоизображения, получившими разные экспозиции. Вообще говоря, граница изображения объекта, отличающегося по яркости от окружающего фона, всегда размыта. Ширина зоны перехода от больших оптических плотностей к малым (пограничной области) для современных фотоматериалов составляет в зависимости от условий экспонирования 10—50 мкм. Субъективное впечатление о Р. ф. и. зависит от скорости, с которой меняется плотность в этой зоне, и абсолютной разности плотностей на её краях. Для количественной оценки Р. ф. и. предложены разные способы, использующие максимальный или среднеквадратичный градиентизменения оптической плотности в пограничной области. Наибольший градиент (наибольшая Р. ф. и.) достигается лишь при некоторой оптимальной экспозиции. В отличие от разрешающей способности, Р. ф. и. характеризует качество воспроизведения относительно крупных деталей фотоизображения. При постоянном расстоянии до объекта для получения фотоснимков с наилучшей Р. ф. и. и с наибольшей разрешающей способностью требуются обычно две разные фокусировки фотографического объектива. М. Я. Шульман.
Резнатрон
Резнатро'н
[англ. resnatron, от resonator — резонатор и (elec)tron — (элек)трон], лучевой тетрод, в котором электроды являются частью резонаторов, образующих входную и выходную колебательные системы. Конструктивно Р. выполнен в виде массивной разборной металлической лампы с водяным охлаждением и с непрерывной откачкой газов из объёма лампы. Резонаторами служат 2 отрезка коаксиальных линий, открытые на одном конце и короткозамкнутые на другом. Изменением длины этих линий достигается изменение собственной частоты резонаторов. Р. выпускались и применялись в 40—50-е гг. 20 в. для усиления и генерирования мощных колебаний (до 85 квт в непрерывном и до нескольких сотен квт в импульсном режиме в дециметровом диапазоне); впоследствии заменены более совершенными тетродами (см. Металлокерамические лампы).
Лит.:
Власов В. Ф., Электронные и ионные приборы, 3 изд., М., 1960.Резолы
Резо'лы,
резольные смолы, термореактивные продукты поликонденсации фенолов с альдегидами (главным образом формальдегидом) невысокой молекулярной массы (400—1000). Р. — вязкие жидкости или твёрдые продукты от светло-жёлтого до чёрного цвета. Содержат в макромолекулах реакционноспособные метилольные (—СН2ОН) группы. См. Феноло-альдегидные смолы.Резольвента
Резольве'нта
(лат. resolvens, родительный падеж resolventis — развязывающий, решающий, от resolvo — развязываю, решаю) (математическая), разрешающее уравнение, разрешающая функция (ядро) или разрешающие операторы. В алгебре термин «Р.» употребляется в нескольких смыслах. Так, под Р. алгебраического уравнения f
(x) = 0 степени n понимают такое алгебраическое уравнение g(x) = 0 с коэффициентами, рационально зависящими от коэффициентов f(x), что знание корней этого уравнения позволяет найти корни данного уравнения f(x) = 0 в результате решения более простых уравнений, степеней не больших n. Например, уравнение
является одной из (кубической) Р. уравнения четвёртой степени
x
4 + a1x3 + a2x2 + a3x + a4 = 0. (1) Если u1
, u2, u3 — корни этой Р., то корни x1, x2, x3, x4 уравнения (1) могут быть найдены решением квадратных уравнений s2 — uks + a4 = 0, k = 1, 2, 3. Именно, если xk, hk — корни этих квадратных уравнений, то x1x2 = x1, x3x4 = h1, x1x3 = x2, x2x4 = h2, x1x4 = x3, x2x3 = h3 и x12 = x1x2/h3 и т. д. Резольвентой Галуа уравнения f(x) = 0 называется такое неприводимое над данным полем алгебраическое уравнение g(x) = 0 (см. Галуа теория), что в результате присоединения одного из его корней к этому полю получается поле, содержащее все корни уравнения f(x) = 0. В несколько ином смысле термин «Р.» употребляется в т. н. проблеме резольвент Гильберта и Чеботарева.
В теории интегральных уравнений
под Р. (разрешающим ядром) уравнения (2)
понимают функцию Г(х
, t, l) переменных s, t и параметра l, при помощи которой решение уравнения (2) представляют в виде,
если l не есть собственное значение уравнения (2), например для ядра К
(s, t) = s + t резольвентой является функцияG (s, t
; l) =
В теории линейных операторов под Р. оператора А понимают семейство операторов Rl = (А — lE)-1, где комплексный параметр l принимает любые значения, не принадлежащие спектру оператора А.Резольвометр