причём tgj = . Т. о., вынужденные колебания представляют собой гармонические колебания с частотой, равной частоте внешнего воздействия; амплитуда и фаза вынужденных колебаний зависят от соотношения между частотой внешнего воздействия и параметрами системы.
Зависимость амплитуды смещений при вынужденных колебаниях от соотношения между величинами массы m
и упругости k легче всего проследить, полагая, что m и k остаются неизменными, а изменяется частота внешнего воздействия. При очень медленном воздействии (w ® 0) амплитуда смещений x0 » F0/k. С увеличением частоты w амплитуда x0 растет, т. к. знаменатель в выражении (2) уменьшается. Когда w приближается к значению (т. е. к значению частоты собственных колебаний при малом их затухании), амплитуда вынужденных колебаний достигает максимума — наступает Р. Далее с увеличением w амплитуда колебаний монотонно убывает и при w ® ¥ стремится к нулю. Амплитуду колебаний при Р. можно приближённо определить, полагая w = .
Тогда x0 = F0/bw, т. е. амплитуда колебаний при Р. тем больше, чем меньше затухание b в системе (рис. 3). Наоборот, при увеличении затухания системы Р. становится всё менее резким, и если b очень велико, то Р. вообще перестаёт быть заметным. С энергетической точки зрения Р. объясняется тем, что между внешней силой и вынужденными колебаниями устанавливаются такие фазовые соотношения, при которых в систему поступает наибольшая мощность (т. к. скорость системы оказывается в фазе с внешней силой и создаются наиболее благоприятные условия для возбуждения вынужденных колебаний). Если на линейную систему действует периодическое, но не гармоническое внешнее воздействие, то Р. наступит только тогда, когда во внешнем воздействии содержатся гармонические составляющие с частотой, близкой к собственной частоте системы. При этом для каждой отдельной составляющей явление будет протекать так же, как рассмотрено выше. А если этих гармонических составляющих с частотами, близкими к собственной частоте системы, будет несколько, то каждая из них будет вызывать резонансные явления, и общий эффект, согласно суперпозиции принципу
, будет равен сумме эффектов от отдельных гармонических воздействий. Если же во внешнем воздействии не содержится гармонических составляющих с частотами, близкими к собственной частоте системы, то Р. вообще не наступает. Т. о., линейная система отзывается, «резонирует» только на гармонические внешние воздействия. В электрических колебательных системах, состоящих из последовательно соединённых ёмкости С
и индуктивности L (рис. 2), Р. состоит в том, что при приближении частот внешней эдс к собственной частоте колебательной системы, амплитуды эдс на катушке и напряжения на конденсаторе порознь оказываются гораздо больше амплитуды эдс, создаваемой источником, однако они равны по величине и противоположны по фазе. В случае воздействия гармонической эдс на цепь, состоящую из параллельно включенных ёмкости и индуктивности (рис. 4), имеет место особый случай Р. (антирезонанс). При приближении частоты внешней эдс к собственной частоте контура LC происходит не возрастание амплитуды вынужденных колебаний в контуре, а наоборот, резкое уменьшение амплитуды силы тока во внешней цепи, питающей контур. В электротехнике это явление называется Р. токов или параллельным Р. Это явление объясняется тем, что при частоте внешнего воздействия, близкой к собственной частоте контура, реактивные сопротивления обеих параллельных ветвей (ёмкостной и индуктивной) оказываются одинаковыми по величине и поэтому в обеих ветвях контура текут токи примерно одинаковой амплитуды, но почти противоположные по фазе. Вследствие этого амплитуда тока во внешней цепи (равного алгебраической сумме токов в отдельных ветвях) оказывается гораздо меньшей, чем амплитуды тока в отдельных ветвях, которые при параллельном Р. достигают наибольшей величины. Параллельный Р., так же как и последовательный Р., выражается тем резче, чем меньше активное сопротивление ветвей контура Р. Последовательный и параллельный Р. называются соответственно Р. напряжений и Р. токов.