Читаем Большая Советская Энциклопедия (ВА) полностью

Вакуум (от лат. пустота)

Ва'куум (от лат. vacuum — пустота), состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве, например в космосе. Поведение газа в вакуумных устройствах определяется соотношением между длиной свободного пробега l молекул (или атомов) и размером d , характерным для данного прибора или процесса. Такими размерами могут быть, например, расстояние между стенками вакуумного объёма, диаметр вакуумного трубопровода, расстояние между электродами электровакуумного прибора и т.п. В зависимости от соотношения l и d различают: низкий В. (l << d ), cpeдний В. (l ~ d ), и высокий В. (l << d ).

  В вакуумных установках и приборах размером d ~ 10 см низкому В. соответствует область давлений выше 102 н /м 2 (1

мм рт. ст. ), среднему В. — от 102 до 10-1 н /м 2 (от 1 до 10-3 мм рт. ст. ) и высокому В. — ниже 0,1 н /м 2 (10-8 мм рт. ст. ). Область давлений ниже 10-6 н /м 2 (10-8
мм рт. cm. ) называют сверхвысоким В. Однако, например, в порах или каналах диаметром d ~ 1 мкм поведение газа соответствует высокому В. при давлениях, начиная с 103 н /м 2 (десятки мм рт. ст. ), а в камерах для имитации космического пространства, размеры которых достигают десятков метров, границей между средним и высоким В. считают давления 10-3 н /м 2 (10-5 мм рт. ст. ).

  Наиболее высокая степень В., достигаемая существующими методами, соответствует давлениям 10-13 —10

-14 н /м 2 (10-15 —10-16 мм рт. ст. ). При этом в 1 см 3 объёма остаётся всего несколько десятков молекул. Достигаемая степень разрежения определяется равновесием между скоростью откачки газа и скоростью его поступления в откачиваемый объём. Поступление может происходить за счёт проникновения газа в вакуумную камеру извне через микроскопические отверстия (течи), а также в результате выделения газа, адсорбированного стенками или растворённого в них (см. Адсорбция ).

  Свойства газа в условиях низкого В. определяются частыми столкновениями молекул газа друг с другом, сопровождающимися обменом энергией между ними. Такой газ обладает внутренним трением (см. Вязкость ). Его течение подчиняется законам аэродинамики (см. Аэродинамика разреженных газов ). Явления переноса (электропроводность, теплопроводность, внутреннее трение, диффузия) в условиях низкого В. характеризуются плавным изменением или постоянством градиента переносимой величины. Например, температура газа в пространстве между «горячей» и «холодной» стенками в низком В. изменяется постепенно. При этом переносимое количество тепла (теплопроводность ) или вещества (диффузия ) не зависит от давления. Если газ находится в двух сообщающихся сосудах при различных температурах, то при равновесии давления в этих сосудах равны. При прохождении тока в низком В. определяющую роль играет ионизация молекул газа (см. Электрический разряд в газе , Ионизация ).

  В высоком В. свойства газа определяются только столкновениями его молекул со стенками. Столкновения молекул друг с другом происходят редко и играют второстепенную роль. Движение молекул между стенками происходит прямолинейно (молекулярный режим течения газа). Явления переноса характеризуются возникновением скачка градиента переносимой величины на стенках; например, во всём пространстве между горячей и холодной стенками примерно половина молекул имеет скорость, соответствующую температуре холодной стенки, а другая половина — скорость, соответствующую температуре горячей стенки, т. е. средняя температура газа во всём объёме одинакова и отлична от температуры как горячей, так и холодной стенок. Количество переносимого тепла, вещества и т.д. прямо пропорционально давлению газа. Давление газа, находящегося в сообщающихся сосудах, p 1

и p 2 при различных абсолютных температурах T 1 и T 2 определяется соотношением:

  Прохождение тока в высоком В. возможно только в результате испускания (эмиссии) электронов и ионов электродами (см. Термоэлектронная эмиссия . Туннельная эмиссия . Вторичная электронная эмиссия , Фотоэлектронная эмиссия , Ионная эмиссия ). Ионизация молекул газа здесь играет второстепенную роль. Она существенна в тех случаях, когда длина свободного пробега заряженных частиц искусственно увеличивается и становится значительно больше расстояния между электродами (см., например, Магнетрон , Магнитный электроразрядный манометр ), или при их колебательном движении вокруг какого-либо электрода (см. Клистрон , Ионизационный манометр ).

  Свойства газа в среднем В. являются промежуточными между его свойствами в низком и высоком В.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже