Особенности сверхвысокого В. связаны уже не с соударениями частиц, а с др. процессами на поверхностях твёрдых тел, находящихся в В. Поверхность любого тела всегда покрыта тонким слоем газа, который может быть удалён нагревом (обезгаживание). После этого поверхностные свойства тел резко изменяются: сильно увеличивается коэффициент трения, в ряде случаев становится возможной сварка материалов даже при комнатной температуре и т.д. Удалённый слои газа постепенно восстанавливается в результате адсорбции молекул газа, бомбардирующих поверхность, что сопровождается изменением её поверхностных свойств. Для изменения этих свойств достаточно образования мономолекулярного слоя газа. Время t
, необходимое для образования такого слоя в В., обратно пропорционально давлению. При давлении p
= 10-4
н
/м
2
(10-6
мм рт. ст
.) t
= 1 сек
, при др. давлениях время t
(сек
) может оцениваться по формуле: t =
10-6
*
р
, где р
— давление в мм рт. ст.
(или по формуле t =
10-4
*
р
),
где р —
давление в н
/м
2
. Эти формулы справедливы, если каждая молекула газа, ударяющаяся о поверхность, остаётся на ней (так называемый коэффициент захвата равен 1). В ряде случаев коэффициент захвата меньше 1 и тогда время образования мономолекулярного слоя соответственно увеличивается. При р
< 10-6
н
/м
2
(10-8
мм рт. ст.
) образование мономолекулярного слоя газа происходит за время, превышающее несколько мин
. Сверхвысокий В. определяется как такой В., в котором за время наблюдения не происходит существенного изменения свойств поверхности (первоначально свободной от газа) вследствие её взаимодействия с молекулами газа. О получении и применении В. см. Вакуумная техника
, об измерении В. — Вакуумметрия
. Лит.
см. при ст. Вакуумная техника
. А. М. Родин.
Вакуум (физический)
Ва'куум
физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. — среда, в которой совсем нет частиц, вовсе не есть лишённое всяких свойств «ничто». Отсутствие частиц в физической системе не означает, что она «абсолютно пуста» и в ней ничего не происходит. Современное понятие В. оформилось в рамках квантовой теории поля
. В микромире, который описывается квантовой теорией, имеет место корпускулярно-волновой дуализм
: любые частицы (молекулы, атомы, элементарные частицы) обладают некоторыми волновыми свойствами и любым волнам присущи некоторые свойства частиц (корпускул). В квантовой теории поля все частицы, в том числе и «корпускулы» световых волн, фотоны, выступают на одинаковых основаниях — как кванты соответствующих им физических полей: фотон — квант электромагнитного поля; электрон и позитрон — кванты электронно-позитронного поля; мезоны — кванты мезонного, или ядерного, поля и т.д. С каждым квантом связаны присущие частицам физические величины: масса, энергия, количество движения (импульс), электрический заряд, спин
и др. Состояние системы и её физические характеристики полностью определяются числом составляющих её частиц — квантов — и их индивидуальными состояниями. В частности, у любой квантовой системы имеется вакуумное состояние, в котором она вовсе не содержит частиц (квантов). В таком состоянии энергия системы принимает наименьшее из возможных значений, а её заряд, спин и прочие характеризующие систему квантовые числа
равны нулю. Эти факты интуитивно понятны: поскольку в вакуумном состоянии нет материальных носителей физических свойств, то, казалось бы, для такого состояния значения всех физических величин должны равняться нулю. Но в квантовой теории действует принцип неопределённостей (см. Неопределённостей соотношение
), согласно которому только часть относящихся к системе физических величин может иметь одновременно точные значения; остальные величины оказываются неопределёнными. (Так, точное задание импульса частицы влечёт за собой полную неопределённость её координаты.) Поэтому во всякой квантовой системе не могут одновременно точно равняться нулю все физические величины. К величинам, которые не могут быть одновременно точно заданы, относятся, например, число фотонов и напряжённость электрического (или магнитного) поля: строгая фиксация числа фотонов приводит к разбросу (флуктуациям) в величине напряжённости электрического поля относительно некоторого среднего значения (и наоборот). Если число фотонов в системе в точности равно нулю (вакуумное состояние электромагнитного поля), то напряжённость электрического поля не имеет определённого значения: поле всё время будет испытывать флуктуации, хотя среднее (наблюдаемое) значение напряжённости будет равно нулю. Таким флуктуациям подвержены и все другие физические поля — электронно-позитронное, мезонное и т.д.