Более чем через три десятилетия ситуация изменилась радикально. Теория струн является первым подходом для соединения ОТО и квантовой механики; более того, она имеет потенциал к объединению нашего понимания всех сил и всей материи. Но квантовомеханические уравнения теории струн не работают в четырех пространственно-временных измерениях, ни в пяти, шести, семи или 7 000. Вместо этого по причинам, обсуждающимся ниже в секции "Физика струн и дополнительные измерения", уравнения теории струн работают только в десяти пространственно-временных измерениях – девяти пространственных плюс время. Теория струн требует больше измерений.
Оригинальное предложение Калуцы и Кляйна предполагает только одно скрытое измерение, но оно легко обобщается на два, три или даже шесть дополнительных измерений, требуемых теорией струн. Например, на Рис. 12.8а мы заменили дополнительное циклическое измерение одномерной формы из Рис. 12.7 на поверхность сферы, двумерную форму (повторим из обсуждения в Главе 8, что поверхность сферы является двумерной, поскольку вам нужны два блока информации – вроде широты и долготы на земной поверхности, – чтобы определить положение).
(а) (b)
Как и с кругом, вы должны представлять сферу прикрепленной к каждой точке обычных измерений, даже если на Рис. 12.8а, чтобы оставить рисунок ясным, мы нарисовали только те сферы, которые лежат на пересечениях линий сетки. Во вселенной такого сорта вам всего понадобится пять блоков информации, чтобы определить положение в пространстве: три блока, чтобы определить ваше положение в больших измерениях (улица, пересекающая улица, номер этажа) и два блока, чтобы определить ваше положение на сфере (широта, долгота), прикрепленной к этой точке. Безусловно, если радиус сферы мал – в миллиарды раз меньше, чем атом, – последние два блока информации почти не будут иметь значения для относительно больших объектов вроде нас самих. Тем не менее, дополнительная размерность является интегральной частью ультрамикроскопического строения пространственной ткани. Ультрамикроскопическому червяку понадобятся все пять блоков информации и, если мы включим время, ему потребуется шесть блоков информации, чтобы указать, где будет вечеринка и в какое время.
Продвинемся еще на одно измерение дальше. На Рис. 12.8а мы рассмотреди только поверхность сфер. Представьте теперь, что, как на Рис.12.8b, ткань пространства включает также и внутренность сфер, – наш маленький планковского размера червяк может закопаться в сферу, как обычный червяк делает с яблоком, и свободно двигаться через ее внутренности. Чтобы определить положение червяка, теперь требуется шесть блоков информации: три, чтобы определить его положение в обычных протяженных пространственных измерениях, и еще три, чтобы определить его положение в шаре, прикрепленном к данной точке (широта, долгота, глубина проникновения). Вместе со временем, следовательно, это есть пример вселенной с семью пространственно-временными измерениями.