Изобретение этого метода когда-то стало поворотным пунктом в моей жизни. Я учился тогда в шестом классе, а в восьмом классе математику вел Арни Бенсон, славившийся необычайно быстрым умом и невероятной способностью работать с числами. Это был первый встреченный мной в жизни человек, который по-настоящему хорошо умел работать с числами (не считая, конечно, моего отца и его братьев). Я смотрел на Арни снизу вверх и мечтал когда-нибудь сравняться с ним и, может быть, даже превзойти его. Когда по школе прошел слух о том, что я мог бы потягаться с ним в умножении однозначного числа на двузначное, он вызвал меня на состязание. И я победил. После этого Арни сказал мне: «Майк, в следующий раз проделаем то же самое с
Мне повезло, и вторая встреча между нами не состоялась. Но я все-таки придумал формулу для устных вычислений такого рода, и эта формула подтолкнула меня к придумыванию новых формул и алгоритмов. Как только до меня дошло, что задачи, как правило, можно решать не одним, а несколькими способами, я понял, что этот принцип приложим в жизни практически к любой задаче. Мне уже не нужно было полагаться целиком и полностью на правила и алгоритмы, которые приводились в учебнике или предлагались кем-то другим. Я мог как угодно прокладывать курс в море чисел, слов и других закономерностей, мог выбирать необычный путь, но достигать того же самого верного ответа.
Арни сейчас живет в Далласе (штат Техас) и умен по-прежнему. Мы до сих пор поддерживаем с ним отношения, ведь его влияние на меня и время, проведенное на его уроках, стали определяющими моментами моей жизни; именно тогда передо мной будто распахнулась дверь и я стал с неослабным интересом придумывать алгоритмы вычислений, чтобы быть впереди всех. Присутствие Арни давало мне дополнительный стимул; мне очень не хотелось опять столкнуться с кем-то, кто вызовет меня на поединок, который я не смогу выиграть! До сего дня одна мысль о том, что мне предстоит испытание или дуэль с сильнейшим противником, заставляет меня без конца выдумывать новые уловки и обходные пути.
Я призываю вас попробовать это упражнение, даже если вы всей душой ненавидите числа и математику. Обещаю, что, как только вы уловите суть этого приема, вам захочется проделывать его снова и снова и демонстрировать свое тайное умение приятелям.
Для начала позвольте показать вам пошагово, как выполняются эти вычисления; затем я дам вам несколько примеров для самостоятельной работы. Если вам удобнее в первые один-два раза пользоваться бумагой и карандашом, не стесняйтесь. Но я хочу, чтобы в какой-то момент вы отказались от любых вспомогательных устройств и далее полагались в вычислениях исключительно на свои мыслительные способности; ваш мозг должен привыкнуть к этим фокусам, научиться подхватывать нужную информацию и отбрасывать ненужную. Этот метод работает как волшебное заклинание всякий раз, когда вам нужно перемножить между собой два двузначных числа; кстати говоря, этот алгоритм — одно из моих собственных изобретений. Поначалу он может показаться длинным и нудным, особенно если попытаться впервые проделать все необходимые действия в голове, но когда шаги уложатся в памяти и вы немного попрактикуетесь, все станет происходить автоматически.
Итак, вот первый пример:
Напоминание. В этом упражнении, объясняя шаги, я буду использовать такие понятия, как «число в разряде десятков» и «число в разряде единиц», или просто «число десятков» и «число единиц». Это помогает мне точно указывать, какое число в данном случае имеется в виду. В предыдущих главах вы уже сталкивались с этими понятиями и должны свободно в них ориентироваться, но на всякий случай вот шпаргалка:
В числе 23 «3» — число единиц в этом числе, а «2» — число десятков.