Читаем CCTV. Библия видеонаблюдения полностью

Чтобы как следует себе представить «световой вопрос» с точки зрения камеры, нам нужно знать, какое количество света действительно падает на фотоприемник.

Величина освещенности на ПЗС-матрице (ИС на ПЗС) (или лицевой панели) Епзс в первую очередь зависит от яркости объекта L, а также от F-числа, т. е. собирающей способности линзы. Чем ниже F-число, тем больше света проходит через объектив (ниже мы еще рассмотрим этот вопрос). Эта величина также пропорциональна коэффициенту пропускания объектива т. А именно, в зависимости от качества стекла и производителя, а также от механики внутренних поверхностей, определенный процент света теряется в самом объективе.

Все вышеупомянутые факторы можно представить следующим соотношением:

Епзс = L∙τ∙π/4∙F2) [лк] (11)

Ниже мы покажем, как выводится это соотношение, чтобы люди, используя эти формулы, могли четко понимать, что здесь предполагается, а что аппроксимируется (11). Но поскольку для этого требуются более сложные математические выкладки, то читатели, не испытывающие к этому интерес или не имеющие соответствующей базы, могут просто воспользоваться соотношением (11) как оно есть, помня при этом, что L — это средняя яркость объекта (в люксах), — это коэффициент пропускания объектива (в процентах), F— это F-число и равно 3.14.

Объект, находящийся в поле зрения камеры и освещенный источником света, испускает свет практически во всех направлениях, в зависимости от функции отражения. На практике объект с гладкими поверхностями в большинстве случаев может считаться ламбертовской равномерно рассеивающей поверхностью.

Тогда можно рассматривать поток, проходящий через полусферу радиуса r с центром ds. Пусть — это приращение угла θ к нормали, тогда поток в объеме, образованном вращением угла проходит через окружность на поверхности сферы, причем радиус окружности равен r dθ, длина — 2π∙r2∙sinθ∙dθ.



Рис. 2.10.Ламбертовская рассеивающая поверхность


Эта элементарная площадка на поверхности сферы задается следующим соотношением:

dA = 2π∙r2∙sinθ∙dθ (12) и тогда телесный угол ω, стягиваемый конусом в центре сферы, задается соотношением:

ω = dA/r2 = 2π∙r2∙sinθ∙dθ/r2 = 2π∙sinθ∙dθ [стерадиан] (13)

поскольку сила света на ламбертовской поверхности (поток в стерадиане) в заданном направлении пропорциональна косинусу угла к нормали, а сила света полной поверхности в направлении нормали равна I, то под углом θ она будет равна I∙cosθ

Сила света dI элементарной площадки ds равна:

dI = I∙cosθ∙ds /s [люмен/стерадиан = кандел] (14)

поскольку I/s это действительная освещенность L в перпендикулярном направлении, то вышеприведенное соотношение принимает вид:

dI = L

cosθ∙ds [кд] (15)

Элементарный поток dF равен элементарной силе света dI, помноженной на телесный угол:

dFLcosθ∙ds∙2π∙sinθ∙dθ [лм] (16)

Общий поток в конусе, образованном углом θ можно найти интегрированием от 0 до θ:


[лм] (17)

Если мы хотим найти полный световой поток, испускаемый во всех направлениях, то нужно положить угол θ равным 90°, тогда получим:

Ft L∙π∙ds [лм] (18)

Теперь, если нам надо сосчитать поток в телесном угле, меньшем 90°, как это происходит в случае, когда камера направлена на объект, общий поток Ft задается формулой:

F0 = π∙L∙ds0∙sin2θ0 [лм] (19)

Если коэффициент пропускания линзы равен τ

, то поток, падающий на плоскость ПЗС (или лицевую панель), равен:

FПЗС = F0∙τ = τ∙π∙L∙ds0∙sin2θ0

Освещенность ПЗС-матрицы (или лицевой панели) будет равна потоку, деленному на площадь, т. е.

EПЗС = τ∙π∙L∙ds0∙sin2θ0/dsПЗС [лк] (21)



Рис. 2.11. Вычисление светового излучения с помощью ламбертовской рассеивающей поверхности


Отношение (dsПЗС/ds0), обратное которому использовалось в предыдущей формуле, известно как коэффициент увеличения объектива m

. Коэффициент увеличения может быть также аппроксимирован как отношение между фокусным расстоянием линзы и расстоянием от линзы до объекта

m = (f/D)2 = dsПЗС/ds0 (22)

Когда мы произведем подстановку этих отношений в нашу основную формулу, то получим:

EПЗС = π∙τ∙L∙sin2θ0∙(D/f)2 [лк] (23)

Здесь потребуется ввести еще одно отношение, связанное с объективом (d/f), которое также известно как F-число объектива. Для объектов, которые расположены достаточно далеко от телекамеры (а это типично в большинстве случаев для систем видеонаблюдения) будет справедливо следующее:

tgθ0 = d/2D = sinθ0/cosθ0 = sinθ0 (24)



Рис. 2.12. Вычисление количества света, падающего на ПЗС-матрицу


Такое допущение имеет право на существование, потому что для очень больших расстояний до объекта угол θ0 будет крайне мал, а значение косинуса этого угла будет стремиться к 1.

Перейти на страницу:

Похожие книги

Как стать гением
Как стать гением

Жизнь творческого человека — это захватывающая борьба личности и мешающих ей внешних обстоятельств. В ней есть свои законы и правила, взлеты и падения. Авторы открыли их, изучив судьбы сотен выдающихся людей, и предлагают читателю сыграть увлекательную шахматную партию на доске, которая называется жизнь.Для прочтения книги предварительные специальные сведения не нужны. Школьника старших классов и студента она заставит задуматься над проблемой выбора Достойной Цели, которой можно посвятить жизнь, начинающий исследователь получит в свои руки мощное орудие для ее осуществления, зрелый ученый заново переживет перипетии своей борьбы и пожалеет, что эта книга не попала к нему много лет тому назад.Итак, эта книга для тех, кто хотел бы посвятить свою жизнь творчеству, независимо от того, к какой области человеческой деятельности оно относится.Жизнь творческого человека — это захватывающая борьба личности и мешающих ей внешних обстоятельств. В ней есть свои законы и правила, взлеты и падения. Авторы открыли их, изучив судьбы сотен выдающихся людей, и предлагают читателю сыграть увлекательную шахматную партию на доске, которая называется жизнь.Для прочтения книги предварительные специальные сведения не нужны. Школьника старших классов и студента она заставит задуматься над проблемой выбора Достойной Цели, которой можно посвятить жизнь, начинающий исследователь получит в свои руки мощное орудие для ее осуществления, зрелый ученый заново переживет перипетии своей борьбы и пожалеет, что эта книга не попала к нему много лет тому назад.Итак, эта книга для тех, кто хотел бы посвятить свою жизнь творчеству, независимо от того, к какой области человеческой деятельности оно относится.

Генрих Саулович Альтов , Генрих Саулович Альтшуллер , И. Верткин , Игорь Михайлович Верткин

Технические науки / Образование и наука
История мусора. От средних веков до наших дней
История мусора. От средних веков до наших дней

Проблема отношений человека и его отходов существует с незапамятных времен. В этой книге рассказывается, какие приключения и перипетии ожидали тех, кто имеет дело с бытовыми отходами, повествуется об их удачах и невзгодах. Здесь приведены свидетельства человеческих усилий в деле освобождения от остатков жизнедеятельности, напоминается о том, сколько воображения, изобретательности проявлено, чтобы извлечь из всего этого толику полезных ресурсов и использовать их, будь то в богатых, бедных или развивающихся странах. Отбросы убивают, угрожают поглотить целые города, изменяют городской пейзаж, отапливают и освещают жилища, обеспечивают выживание миллионов обиженных судьбой, создают всякого рода «малые промыслы», откармливают стада свиней, играют с детьми, дают обманчивый, но все же выход из одиночества для узников, служат источником вдохновения для сумасшедших и художников, а то и основой праздничных зрелищ.Катрин де Сильги — видный специалист по охране окружающей среды.

Катрин де Сильги

Технические науки