Читаем Человек + машина. Новые принципы работы в эпоху искусственного интеллекта полностью

«Умная» автоматизированная гипотеза

По итогам наблюдений ученые формулируют гипотезы. В сущности, гипотеза — это возможное и проверяемое объяснение феномена. Что произойдет с научным методом, если гипотезы можно будет генерировать автоматически? Компания GNS Healthcare, работающая в области точной медицины, изучает такую возможность. Она использует мощный программный пакет для машинного обучения и моделирования REFS (что расшифровывается как «обратное проектирование и прогнозное моделирование»), который формулирует гипотезы непосредственно из данных с целью, например, выявить взаимосвязи в медицинских картах пациентов. В одном случае GNS удалось за три месяца воспроизвести двухлетнее исследование, посвященное взаимодействию лекарственных препаратов.

Это исследование было призвано выявить патологические побочные реакции у пожилых пациентов, пользующихся программой Medicare и принимающих несколько препаратов одновременно. Неудачные лекарственные комбинации — это большая проблема, не имеющая стандартного решения: при тестированиях, проводимых FDA[51]

, разные комбинации лекарственных препаратов не проверяются, поэтому нет простого способа выяснить, какие из них опасны. В прошлом исследователи полагались на научную интуицию, подсказывавшую, что лекарства со схожей ферментативной активностью могут взаимодействовать с другими препаратами аналогичным образом. Затем исследователи формулировали гипотезу — например, сочетание препарата A с препаратом B приводит к патологической реакции C, — после чего, естественно, проверяли ее. Таким методом ученые могли выяснить, что два распространенных препарата для пожилых людей негативно взаимодействуют друг с другом, но исследование позволяло выявить взаимодействие лишь между двумя конкретными препаратами.

Тестируя систему REFS, компания GNS Healthcare оценила анонимизированные данные примерно от 200 000 пациентов и обширный спектр лекарств, представленных на рынке. Глава GNS Колин Хилл — основатель и СЕО компании — заявил, что данные были зашифрованы. «Мы не знали, что за лекарства проверяем. То есть любые манипуляции исключены»

[52]. Платформа машинного обучения «перебрала» примерно 45 квадриллионов гипотез и всего через три месяца выдала конечный результат: взаимодействия лекарственных препаратов, которые с наибольшей вероятностью могли приводить к осложнениям.

Хилл утверждает, что люди из его команды не знали, верны ли полученные ими результаты; они просто передали эту информацию ученым, изучающим взаимодействия лекарственных средств. Оказалось, что REFS действительно выявила взаимодействие, на подтверждение которого ученым потребовалось два года. Удалось обнаружить взаимодействие препаратов, которое обсуждали между собой лишь пациенты, а официально его никто не изучал. Исследователи смогли проверить собственные наблюдения, собранные годом ранее, а затем посмотреть записи и увидеть, какие взаимодействия программа обнаружила год спустя. Именно там, в их собственных записях, удалось подтвердить причинно-следственную связь, прежде незамеченную. «Впервые мне довелось узнать, как эти машины добывают новые медицинские знания, — сказал Хилл, — прямо из данных. Человек не участвовал в этом открытии»[53]

.

GNS Healthcare демонстрирует, что, когда искусственный интеллект привлекается к научному методу на этапе формирования гипотез, удается обнаруживать ранее не выявленные корреляции и причинно-следственные связи, а также существенно сократить издержки. Недавний успех GNS связан с радикальным переосмыслением бизнес-процесса: компании удалось без предварительных гипотез или предположений, а только с помощью метода обратного проектирования воспроизвести PCSK9 — класс препаратов, снижающих уровень «плохого» холестерина в крови. Потребовалось 70 лет, чтобы открыть PCSK9; за десятилетия на исследования были потрачены десятки миллиардов долларов. Применяемые же в GNS модели машинного обучения на основе исходных данных смогли воссоздать всю известную биологическую активность липопротеинов низкой плотности (ЛПНП) всего за десять месяцев и менее чем за миллион долларов.

Переворот в дизайне

Гипотезу необходимо подтвердить или опровергнуть. Это происходит на этапе тестирования, который во многих организациях тесно связан с продуктовым дизайном. Здесь компании могут применять искусственный интеллект и большие данные для рассмотрения бесчисленных альтернатив и последующего сужения поля экспериментов для выбора наиболее перспективных вариантов. Как и в примерах, рассмотренных выше, в данном случае искусственный интеллект помогает организациям перенаправить ресурсы, в том числе наиболее ценный человеческий ресурс, на более важные виды деятельности.

Перейти на страницу:

Похожие книги

Исследование о природе и причинах богатства народов
Исследование о природе и причинах богатства народов

Настоящий том представляет читателю второе издание главного труда «отца» классической политической экономии Адама Смита – «Исследование о природе и причинах богатства народов» (1776). Первое издание, вышедшее в серии «Антологии экономической мысли» в 2007 г., было с одобрением встречено широкими кругами наших читателей и экспертным сообществом. В продолжение этой традиции в настоящем издании впервые публикуется перевод «Истории астрономии» А. Смита – одного из главных произведений раннего периода (до 1758 г.), в котором зарождается и оттачивается метод исследования социально-экономических процессов, принесший автору впоследствии всемирную известность. В нем уже появляется исключительно плодотворная метафора «невидимой руки», которую Смит обнародует применительно к небесным явлениям («невидимая рука Юпитера»).В «Богатстве народов» А. Смит обобщил идеи ученых за предшествующее столетие, выработал систему категорий, методов и принципов экономической науки и оказал решающее влияние на ее развитие в XIX веке в Великобритании и других странах, включая Россию. Еще при жизни книга Смита выдержала несколько изданий и была переведена на другие европейские языки, став классикой экономической литературы. Неослабевающий интерес к ней проявляется и сегодня в связи с проблемами мирового разделения труда, глобального рынка и конкуренции на нем.Все достоинства прежнего издания «Богатства народов» на русском языке, включая именной, предметный и географический указатели, сохранены. Текст сверялся с наиболее авторитетным на сегодняшний день «Глазговским изданием» сочинений Смита (1976–1985, 6 томов).Для научных работников, историков экономической мысли, аспирантов и студентов, а также всех интересующихся наследием классиков политической экономии.

Адам Смит

Экономика
Финансовое право
Финансовое право

Учебник составлен в соответствии с требованиями государственных образовательных стандартов второго поколения по специальностям 030501 «Юриспруденция», 080107 «Налоги и налогообложение» и 080105 «Финансы и кредит».На основе последних изменений в российском законодательстве в области финансов изложены теоретические основы финансового права и его важнейших подотраслей и институтов – налогового и бюджетного права, страхования, банковской деятельности, денежного обращения и валютного контроля и др.Учебник предназначен для студентов юридических и экономических факультетов вузов, аспирантов, соискателей, ученых и специалистов.

Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин

Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес
Основы проектирования корпоративных систем
Основы проектирования корпоративных систем

В монографии рассматриваются важнейшие аспекты разработки прикладных программных систем для корпораций – крупных распределенных индустриальных структур, объединенных общими бизнес-целями. Особенностью подхода является исследование всего комплекса архитектурных уровней, необходимых для построения таких систем, – от моделей жизненного цикла и методологий их реализации до технологических платформ и инструментальных средств. Приведен ряд примеров, иллюстрирующих особенности применения современных технологий (в первую очередь, разработанных корпорацией Microsoft) для реализации и внедрения крупномасштабных программных систем в различных отраслях народного хозяйства.Для студентов, аспирантов и исследователей, а также специалистов-практиков, область интересов которых связана с разработкой крупномасштабных программных систем.

Сергей Викторович Зыков

Экономика