Подобные изменения существенно влияют на то, как клиент воспринимает корпорации и бренды. Зачастую удается сэкономить время и ресурсы клиента, а также предоставить ему персонализированные решения и продукты, отказавшись от ненужной рекламы; эта тенденция постепенно выходит на первый план в розничной торговле. В других случаях, например при кредитовании в режиме реального времени (где искусственный интеллект используется для анализа обширных и разнообразных данных), можно очень быстро и существенно упростить доступ к кредитам и займам для тех клиентов, которые, возможно, никогда бы не получили кредит при традиционной банковской проверке.
Наконец, эти изменения неизбежно влияют на отношения, связывающие клиентов, компании и продукты. По мере того как генерируется все больше информации о характеристиках товаров и сами изделия отправляют данные изготовителю, компании могут переосмыслить постпродажное обслуживание и сам продукт. Например, в умных светильниках компании Philips искусственный интеллект прогнозирует, когда лампочка начнет тускнеть, и эти данные встраиваются в циклы ремонта и утилизации. Иными словами, датчики и искусственный интеллект позволяют компании продавать не просто лампочки, а «освещение как услугу»[68]
.Невероятно, честно говоря. С внедрением искусственного интеллекта во фронт-офис вновь встает вопрос о лучших практиках. Как искусственный интеллект и новые формы взаимодействия человека и машины меняют корпоративные стандарты доставки товаров и предоставления услуг и как эти взаимодействия в будущем изменят саму суть работы? Как новые пользовательские интерфейсы (например, Alexa) меняют отношение потребителей к брендам? Какие дизайнерские решения может подсказать или забраковать бот, предназначенный для работы с естественным языком? Что произойдет, когда логотипы и символы-талисманы — традиционные амбассадоры брендов — станут «умными»? Именно на эти вопросы отвечает данная глава.
Магазин, который знает своих клиентов
Чтобы ответить на эти вопросы, вернемся в торговый зал. Пока Coca-Cola запускает пилотные проекты с ИИ-технологиями для автоматизации снабжения, другие компании уделяют больше внимания совершенствованию работы с клиентами,
Зеркало умеет переводить на шесть языков и выводить подробную информацию о товаре. Оно также может менять освещение в примерочной (яркий солнечный свет, закат, клубное освещение и т. д.), показывая клиенту, как он будет выглядеть в разных условиях. Зеркало подскажет, какие товары доступны в других вариантах (иной цвет, иной размер), и продавец принесет нужные модели в примерочную. Подобная возможность — это персонализированное обслуживание клиентов, которое обычно не в силах обеспечить сотрудник-человек, ведь к нему одновременно обращается множество покупателей.
Разумеется, умное зеркало собирает информацию о покупателе: сколько времени он провел в примерочной, какая конверсия (отношение выбранных товаров к купленным) и другие данные. Магазин может обобщить, проанализировать эту информацию и получить неочевидные выводы. Например, покупатели часто примеряют ту или иную одежду, но почти никогда ее не покупают — на основе этой информации магазин может в будущем скорректировать закупки. Более того, подобная информация о клиенте, а также другие данные, например его перемещения по залу, могут применяться при проектировании магазинов. Представьте: вы можете управлять множеством моделей потребительского поведения и оптимизировать планировку магазина так, чтобы ваши покупатели остались довольны, возвращались к вам снова или покупали определенные товары.
Ритейлер также может использовать искусственный интеллект для решения операционных задач, например управления персоналом. Так, глобальная японская сеть магазинов одежды занимается оптимизацией труда продавцов, работающих в зале. В отделах одежды и обуви именно эти сотрудники играют ключевую роль: около 70% опрошенных покупателей признались, что нуждаются в их рекомендациях[70]
, поэтому для эффективного управления персоналом было решено воспользоваться ИИ-решением от компании Percolata.Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес