Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Кон: Неужели вы не должны демонстрировать красоту математики? Разве она не вдохновляет студентов? Остается ли место для красоты в науке?

Ответ: Главное требование – производительность.

Кон:

Это не ответ.

Ответ: Геометрия была разработана в практических целях. Эволюция геометрии не могла удовлетворить нужды науки и технического прогресса, и в XVII веке Декарт открыл аналитическую геометрию. Он анализировал поршни и токарные станки и одновременно – принципы аналитической геометрии. Труды Ньютона обусловлены развитием промышленности. Ньютон сказал: «Основа любой теории – общественная практика». Общепринятой теории красоты не существует. Одним кажется красивым одно, другим – другое. Социалистическое строительство – это очень красиво, это вдохновляет наш народ. До Культурной революции некоторые из нас верили в красоту математики, однако не могли решить практических задач, а теперь мы имеем дело с газовыми и водопроводными трубами, с кабелями и прокатными станами. Мы делаем это на благо страны, и рабочие это ценят. Это чувство и есть настоящая красота.

Поскольку, как недвусмысленно заявлено в этом диалоге, едва ли существуют официальные, общепризнанные критерии красоты в математике и правила, согласно которым их следует применять, я и предпочту говорить лишь об одной конкретной составляющей математики, которая неизменно доставляет удовольствие как специалистам, так и неспециалистам: о способности изумлять.

Математика должна изумлять

В письме, написанном 27 февраля 1818 года, английский поэт-романтик Джон Китс (1795–1821) писал: «Поэзия должна изумлять отточенным превосходством, а не оригинальностью, она должна изумлять читателя, будто воплощение в словах его собственных высочайших помыслов, и казаться чуть ли не воспоминанием». Математика, в отличие от поэзии, вызывает восторг скорее тогда, когда приводит к неожиданным результатам, чем когда подтверждает ожидания читателя. Кроме того, удовольствие, которое доставляет математика, во многих случаях как раз связано с неожиданностью, когда получаешь совершенно непредвиденные результаты и выявляешь поразительные соотношения. Прелестный пример математического соотношения, в истории которого сочетаются все эти элементы, что и приносит огромное удовольствие – это так называемый «закон Бенфорда».

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука