Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Однако закону Бенфорда подчиняются не все списки чисел. Например, телефонные номера обычно начинаются с определенного кода, соответствующего региону. Даже таблицы квадратных корней не подчиняются этому закону. С другой стороны, не исключено, что если собрать все числа, появившиеся в передовицах нескольких местных газет в вашем городе за неделю, они будут распределяться по этой формуле. Но почему же так получается? Что общего у городского населения в штате Массачусетс со смертностью от землетрясений во всем мире и с числами из статей в «Readers Digest»? И почему этому же правилу подчиняются числа Фибоначчи?

Строго доказать закон Бенфорда математическими методами оказалось совсем не просто. Одним из главных препятствий стал именно тот факт, что подчиняются этому закону не все перечни чисел – и даже приведенные примеры из ежегодника «World Almanac» не вполне ему соответствуют. В статье об этом законе в журнале «Scientific American», опубликованной в 1969 году, математик Ральф А. Райми из Рочестерского университета сделал вывод, что «ответ остается неясным».

Объяснить этот закон удалось лишь в 1995–1996 годах, и сделал это математик из Технологического института в Джорджии Тед Хилл. Хилл заинтересовался законом Бенфорда в начале девяностых, когда готовил доклад о сюрпризах вероятности. Вот как он вспоминал об этом в беседе со мной: «Я начал работать над этой задачей для развлечения, однако многие коллеги предупреждали меня, что надо быть осторожным, поскольку закон Бенфорда вызывает наркотическое привыкание». После нескольких лет работы Теда наконец осенило, что не нужно рассматривать числа из одного конкретного источника: главное – это смесь данных

. Хилл переформулировал закон Бенфорда статистически в новой форме: «Если распределения подбираются случайно (любым непредвзятым способом) и из каждого распределения выбираются случайные образцы, то частота встречаемости цифр на значимом месте в смеси образцов сходится к распределению Бенфорда, даже если некоторые отдельные выбранные распределения не подчиняются этому закону». Иными словами, предположим, что вы собрали случайный набор чисел из мешанины распределений – например, из таблицы квадратных корней, таблицы смертности в сенсационных авиакатастрофах, населения округов и расстояний между теми или иными городами на планете по воздуху. Некоторые эти распределения сами по себе не будут подчиняться закону Бенфорда, но Хилл доказал, что чем больше вы соберете подобных чисел, тем ближе встречаемость цифр в этих числах будет к предсказанной законом Бенфорда. Так почему же этому закону подчиняются и числа Фибоначчи? Ведь они-то строго определены рекурсивным соотношением, это не случайные образцы из случайных распределений.

Так вот, в этом случае выясняется, что соответствие закону Бенфорда свойственно не только числам Фибоначчи, но и другим подобным последовательностям. Если исследовать большой массив различных степеней двойки (21 = 2, 22 = 4, 2

3 = 8 и т. д.), станет видно, что они тоже подчиняются закону Бенфорда. Удивляться этому не следует, если учесть, что сами по себе числа Фибоначчи – это степени золотого сечения (вспомним, что n-ное число Фибоначчи близко к n
/5). В сущности, можно доказать, что закону Бенфорда подчиняются последовательности, заданные большим классом рекурсивных соотношений.

Закон Бенфорда – очередной поразительный пример того, как чистая математика превращается в прикладную. В числе прочих занятных способов применения этого закона – выявление подделки и фабрикации данных в бухгалтерии и при уклонении от налогов. Данные из самых разных финансовых документов всегда очень хорошо соответствуют закону Бенфорда. А сфабрикованные данные – очень редко. Хилл доказал, как работает этот метод выявления мошенничества, на одном простом примере при помощи теории вероятности. На первом занятии своего курса по теории вероятностей Хилл просит студентов провести эксперимент. Если девичья фамилия их матери начинается с букв от А до L, они должны подбросить монетку 200 раз и записать результат – сколько было орлов и сколько решек. Остальным студентам предлагается подделать результат 200 бросков монетки, то есть создать случайную последовательность орлов и решек. На следующем занятии Хилл собирает результаты и очень быстро определяет, где результат подлинный, а где поддельный, и в 95 % случаев не ошибается. Как ему это удается? В любой последовательности из 200 бросков монетки, если ее действительно бросали, с большой вероятностью попадается по шесть орлов или шесть решек подряд. А когда кто-то пытается подделать последовательность из 200 бросков монетки, им кажется, что такого уж точно не может быть.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука