Количество возможных стоаминокислотных белков далеко превосходит пригодные для использования числа. Отметим: если только одно из миллиона этих уникальных соединений растворимо в воде и лишь одно из миллиона имеет химически активную поверхность, то существует 1043
потенциальных энзиматически активных растворимых белков длиной в сто аминокислот. Из этих чисел вполне ясно, что количество потенциальных живых организмов едва ли исчислимо и, возможно, бесконечно. Далее мы сталкиваемся со вторым условием, уже не имеющим отношения к науке о жизни, — огромным количеством измерений описательного гиперпространства… Сочетание огромного размера и «непредсказуемого» усиления термального шума показывает, что наш реальный мир весьма малонаселен… Кажется вполне очевидным, что… в подавляющем большинстве гиперпространств с интересными биологическими характеристиками невозможно сформулировать никакие теории глобального экстремума ([37], с. 268).Если необходимо, я могу выделить главную мысль этого абзаца: вероятность возникновения в одном углу белкового «гиперпространства» двух похожих планет исчезающе мала. Однако есть причины считать, что жизнь, которую мы можем ветретить на других планетах, может вызвать у нас сильное ощущение «дежа вю», вплоть до того, что будет занимать то же белковое «пространство». Хорошо известно, что общее разнообразие земных белков, хотя и не задокументированное, не слишком велико — не более нескольких тысяч семей (см., например, [5]). Более того, белковая структура является до некоторой степени модульной конструкцией, в которой снова и снова используется ограниченное число «строительных блоков». В этом смысле комбинаторная необозримость белкового «гиперпространства» не так серьезна, как кажется на первый взгляд. В белке существуют некоторые участки, для которых подходит лишь одна аминокислота, но в других его участках аминокислоты могут заменять друг друга (однако см. [1]). Кроме того, важно помнить, что, по крайней мере в некоторых случаях, форма белка не слишком важна, если он адекватно выполняет свои функции. Хорошие примеры этому можно найти среди некоторых кислородосодержащих белков. Например, гемоцианин, медесодержащий белок, встречается у некоторых ракообразных и головоногих моллюсков. Несмотря на его название, структуры этих «гемоцианинов» сильно отличаются от классической; по–видимому, они пришли к выполнению тех же функций путем конвергенции (см., например, [24]). Еще более знаменательна эволюция у некоторых слизней молекулы миоглобина, также весьма отличной от настоящего миоглобина, но обладающей теми же свойствами [41]. Можно привести еще много интересных примеров конвергенции молекул; однако необходимо добавить, что тезис «протеиновое гиперпространство намного более узко, чем это обычно полагают» еще нуждается в доказательстве (см. [9]).
Предположение о том, что у эволюции жизни имеется какая‑то изначальная внутренняя структура, едва ли способно воодушевить классических дарвинистов, учитывая их болтливую приверженность к натуралистической метафизике. Однако реалии естественного отбора не исключают существования структур более высокого уровня, предлагающих широкий выбор образцов. Они, разумеется, тоже существуют в естественном мире. По аналогии с условиями антропного принципа мы свободны рассматривать их как голые факты: мир таков просто потому, что он таков. И в то же время изумление, аналогичное антропному изумлению перед сложностью живых организмов, тем, как сложное вырастает из простого, безошибочным движением органов к функциональности, как минимум, дает нам право рассматривать и иную возможность: быть может, вселенная и жизнь в ней возникли вовсе не в результате какой‑то дурной и бесцельной случайности. Разумеется, вера в сотворенную вселенную не должна вести нас к убеждению, что эта вселенная обязана быть в каком‑то смысле «совершенной». Сама по себе эволюция — реальность, которую нельзя отрицать; и, как уже отмечалось, не каждый из ее путей ведет вверх. В той же мере возможно и упрощение, если не регресс.