Допустим, нам нужно изобразить два отрезка с одинаковыми координатами концов. Очевидно, что точки отрезка будут изображаться последовательно, а это уже движение, имеющее и направление и скорость. Вот его и можно использовать. Однако это не обязательно. Если использовать оба значения параметра анизотропии m, то будут изображены два симметричных, зеркальных объекта. Эти объекты зеркальны относительно оси m = 0, а их диаграммные координаты однозначно определены соответствующими параметрами анизотропии m и n.
Таким образом, имея функции преобразования, можно построить любую геометрическую фигуру. Давайте построим "секундомер", такой же, как на диаграммах с бесконечными горизонтами рис.13.
Построение "секундомера" можно произвести симметрично как с пересечением двух изображений друг с другом, так и без пересечения, когда каждое из изображений будет полностью находиться в одной из областей – выше или ниже оси m = 0. Мы построим только одно полноразмерное изображение каждого из выбранных объектов для одного из значений знака m – рис.14.
На рисунке изображены три объекта – две окружности, внутри которых вращаются стрелки – указатели, наподобие секундомеров, и группа из концентрических окружностей. Отметим со всей определенностью, что на рисунке изображены только
Рис.14. Секундомеры на координатной 2М‑диаграмме. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig14.gif
Обратим внимание, что диаграмма явно "чувствует" знак параметра, поскольку в данном случае указатель секундомера на анимации движется в правильном направлении, по часовой стрелке. Однако, если мы принудительно поменяем знак параметра, то картинка просто перевернётся, зеркально отразившись от оси x. В этом случае направление движения указателя также изменится на противоположное.
Этот переворот виден на правой стороне диаграммы. Фрагмент отдаленно напоминает картину "Твердость памяти" Сальвадора Дали с "плавящимися часами". У нас на диаграмме, как и выше, так же изображен круг, в котором вращается стрелка – указатель. Параметры окружности: радиус R = 5.66, а центр имеет координаты x = 10, y = 0. Длина указателя или радиус окружности, которую описывает его конец, равны 5,6. Знак параметра m выбран отрицательным и диаграмма это вновь "почувствовала", направив вращение указателя против часовой стрелки. Если для этой окружности мы выберем знак параметра m положительным, то "секундомер" просто отразится зеркально от оси x, а указатель будет вращаться, как положено – по часовой стрелке. Слева внизу диаграммы для наглядности изображена группа концентрических окружностей.
Все визуальные деформации связаны исключительно с криволинейностью системы координат 2М‑диаграммы.
Заключение
Итак, основная, фундаментальная сущность диаграмм Пенроуза состоит в отображении на квадрат конечных размеров бесконечного
Используя уравнения преобразования координат, мы можем изобразить на диаграмме Пенроуза любую мировую линию, график вообще любой функции
Литература
Хокинг С., Эллис Дж., Крупномасштабная структура пространства-времени. М.: «Мир», 1977.
Хокинг С., Пенроуз Р. Природа пространства и времени. – Ижевск: НИЦ "Регулярная и хаотическая динамика". 2000. 160 с.
Путенихин П.В., Динамические диаграммы Минковского на примере обмена световыми сигналами, 2014, URL:
Путенихин П.В., Показательная функция для 2м-диаграммы Пенроуза, 2019, URL:
Путенихин П.В. Диаграммы Пенроуза. Анализ и критика. – Саратов: "АМИРИТ", 2017. – 176 с., цв. илл., URL: https://www.twirpx.org/file/3078810/