В некоторый момент времени из ИСО B испускается световой сигнал r3
, который достигает ИСО A. В этот же момент времени оттуда отправляется ответный световой сигнал r4. Через какое-то время этот сигнал достигает ИСО В.Рис.10. Диаграммы Пенроуза для двух ИСО, обменивающихся световыми сигналами. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig10.gif
Для проверки принципа относительности мы находим явным образом координаты всех известных нам точек излучения и получения сигналов. При этом мы знаем, что отрезки времени в ИСО В сократились по сравнению с отрезками в ИСО А. Мы можем вычислить и точку начала отсчета, когда две ИСО находились рядом, и коэффициент лоренцева сокращения.
После внесения в алгоритм программы этих точек и запуска программы мы видим, что всё в точности соответствует описанной картине в ИСО А. Сначала из ИСО В излучается луч r3
, после получения которого в ИСО А излучается ответный сигнал r4. Все точки находятся на мировых линиях участников, никаких разрывов нет.Таким образом, видим, что в данной задаче диаграммы Пенроуза полностью соответствуют диаграммам Минковского [3], в частности, непротиворечиво демонстрируя картину обмена световыми сигналами. Вместе с тем, ромбовидные диаграммы Пенроуза в этой традиционной области теории относительности явно проигрывают обычным диаграммам Минковского просто по причине своей слабой наглядности и крайне криволинейной графики. Сжатие бесконечной области пространства-времени в рисунок конечных размеров не только не дает никакой новой информации, но и заметно усложняет восприятие, извлечение информации классической.
Произвольные фигуры на диаграмме
Как отмечено, диаграммы Пенроуза принципиально ничем не отличаются от традиционных, классических декартовых систем координат. Поэтому их можно использовать таким же образом для любых графических построений. Поскольку координатная сетка на диаграммах Пенроуза криволинейная, такие фигуры и графики выглядят довольно-таки экзотически – рис.11. Координатная сетка, линии погашены.
Например, отрезок синусоиды
Более привычный вид имеет гипербола t = 1/
Еще более непривычный вид имеет отрезок параболы
Понятно, что на диаграмме можно изобразить все эти графики функций полностью – в диапазонах изменения аргумента и функции от минус до плюс бесконечности.
Рис.11. Изображение на диаграмме Пенроуза графиков функций – sin(r),
гиперболы 1/r и параболы r2
Добавим, что универсальными изобразительными свойствами обладают также и другие релятивистские системы координат, например, координаты Крускала. В этих координатах размеры фигур ограничены рамками полотна, координатной сетки. Для примера на рисунке рис.12d‑g также условно изображены традиционный гиперкуб – тессеракт, синусоида и секундомер, который аналитически, в уравнениях представляет собой обычную окружность.
Рис.12. Фигуры на диаграммах Крускала
Очень интересно на диаграмме Пенроуза выглядит наипростейшая геометрическая фигура – круг. На рис.13 он изображен в виде стилизованного секундомера, который приобрел довольно забавные очертания, деформируясь в некоторое подобие квадрата.
Рис.13. Диаграмма Пенроуза для вращающейся в круге стрелки. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig13.gif
Трудно представить, но на рисунке действительно изображен круг с вращающейся внутри стрелкой. Особенно забавно картина выглядит на анимации. В процессе движения по окружности стрелка постоянно изгибается – образуя горб то по ходу движения, то против него. И только в четырех точках своей траектории стрелка превращается в прямую линию – на светоподобных траекториях.
Как и в случае диаграммы с бесконечными горизонтами, 2М‑диаграмма так же является просто координатной системой, ничем принципиально не отличающейся от декартовой. Поэтому и здесь мы вполне можем рассматривать в качестве координат не время и радиус, а обычные декартовы координаты x-y. Однако в этом случае возникает интересный вопрос. На таких 2М‑диаграммах Пенроуза имеется обнаруженная ранее право-левая анизотропия, полярность времени [4]. Интересно выяснить, каким образом она проявится в этом координатном случае? Каждому значению x, согласно анизотропии диаграммы, должны соответствовать два разных значения y. Для уравнений "прямых" линий всё, вроде бы, останется по-прежнему – величина зависит от скорости изменения функции. Но как быть с единичной точкой, об истории которой ничего не известно?