13. В предыдущей главе мы заметили, что ускоренное расширение пространства порождает крохотную постоянную температуру примерно в 10–30 K. Температура черной дыры с массой больше чем примерно в 1023 масс Солнца была бы меньше нормальной температуры пространства в далеком будущем. Однако по размеру такая черная дыра превосходила бы сам космологический горизонт.
14. Математика подсказывает, что фотоны, проходя через поле Хиггса, не испытывают никакого лобового сопротивления, что делает их безмассовыми, а хиггсовское поле невидимым.
15. Питер Хиггс в «Что такое космос?» — первом из четырех эпизодов документального фильма студии NOVA The Fabric of the Cosmos, основанного на одноименной книге. Среди других физиков, которые примерно в это же время разрабатывали похожие идеи, можно назвать Роберта Браута и Франсуа Энглера, а также Джеральда Гуральника, Ричарда Хагена и Тома Киббла. Хиггс и Энглер разделили Нобелевскую премию за свою работу.
16. В этом конкретном числе меньше смысла, чем могло бы показаться. Величина 246 (или, точнее, 246,22 ГэВ, где ГэВ — традиционная единица под названием гигаэлектронвольт) зависит от математических соглашений, которые обычно принимают физики. Менее стандартные соглашения выдали бы эквивалентную физику с другими численными значениями.
17. Sidney Coleman, "Fate of the False Vacuum", Physical Review D 15 (1977): 2929; Erratum, Physical Review D 16 (1977): 1248.
18. Точнее говоря, эта сфера будет расширяться сначала медленно, а затем скорость ее расширения стремительно вырастет почти до скорости света.
19. A. Andreassen, W. Frost, and M. D. Schwartz, "Scale Invariant Instantons and the Complete Lifetime of the Standard Model", Physical Review D 97 (2018): 056006.
20. Идея о том, что наша Вселенная могла бы появиться из высокоэнтропийной однородной ванны частиц, летающих и сталкивающихся в пустоте, в которой редкие спонтанные провалы к более низкой энтропии приводили в результате к возникновению упорядоченных структур, которые мы видим вокруг, была предложена Людвигом Больцманом в двух статьях (Ludwig Boltzmann, "On Certain Questions of the Theory of Gases", Nature 51 [1895]: 1322, 413-15; Ludwig Boltzmann, "Entgegnung aufdie warmetheoretischen Betrachtungen des Hrn. E. Zermelo", Annalen der Physik 57 [1896]: 773-84). Позже Артур Эддингтон указал, что, поскольку менее существенные провалы в энтропии имеют больше шансов на реализацию, намного более вероятно, что такие флуктуации не привели бы к возникновению целой вселенной, полной звезд, планет и людей — очень впечатляющее падение энтропии, — но породили бы только «математических физиков» (наблюдателей, занятых теми самыми мысленными экспериментами, которые он исследовал) в неорганизованной в остальном среде (A. Eddington, "The End of the World: From the Standpoint of Mathematical Physics", Nature 127, no. 1931 [3203]: 447-53). Много позже представление о «математических физиках» было редуцировано до более скромного снижения энтропии — порождающего лишь воспринимающие компоненты наблюдателей, получившие название «больцмановских мозгов» (насколько мне известно, впервые этот термин был использован в: A. Albrecht and L.
Sorbo, "Can the Universe Afford Inflation?" Physical Review D 70 [2004]: 063528).
21. По причинам, названным в этой главе, я сосредоточусь на спонтанном возникновении структур, способных мыслить — больцмановских мозгов, но спонтанное возникновение целых новых вселенных или спонтанное воспроизведение условий, которые запустили инфляционное космологическое расширение, также заслуживают внимания. Чтобы не перегружать эту главу, я рассмотрю такие возможности в примечаниях 22 и 34.