Читаем Додекаграммы И Цзина. Код Книги Перемен полностью

Этот набор додекаграмм, представленный на рис. 14, дает нам правило выбора векторности додекаграмм, и эта векторность (т. е. какая гексаграмма в зеркальной паре – первая) устанавливает при гадании отнесение додекаграммы к ее месту в «распределении Бу ши» и в восьмиричном наборе «диполя Бу ши» и соответственно возникает ее понимание, трактовка в построениях более высокого порядка, чем набор в квадрате гексаграмм Фу Си. Примечательна избранность додекаграмм на оси рис. 13 б) и нижнего ряда рис. 15 с применением принципа минимального «отклонения» для первой Гуа (вспомним рис. 12). Ось 1\64–64\1 очевидно позиционируется как скелет, костяк предстоящего построения Вэнь Вана по структуре «распределения Бу ши».

Вообще говоря, до рис. 14 (определение первенства в паре зеркальных гексаграмм) наличие «первого слоя основного текста» вызывало некоторую неловкость, сомнения: не наработки ли это ханьских мудрецов? или это плоды размышлений создателей «Десяти Крыльев»? Создателей афоризмов? Структура сумм додекаграмм рис. 14 прямо указывает нам на наличие их взаимоувязывания (при построении Книги Гуа) со структурами сумм мантических формул первого слоя квадрата гексаграмм Фу Си Рис. 8.

Несколько строк о том, почему выбраны именно такая векторность и такой набор (рис. 14). Попробуем воссоздать путь построения. Вероятная задача – отобразить в векторности и расположении инверсных пар додекаграмм структуру, где внутренняя часть додекаграммника, 2 и 3 квадранты рис. 13а), имеют не изменяющуюся векторность инверсных пар додекаграмм (на рис. 16а они симметричны относительно центра додекаграммника каждого комплекса) а 1 и 4 – наружные квадранты – изменяющуюся (на рис. 16а эти инверсные пары додекаграмм симметричны оси 1\64–64\1) – что-то типа набора 6, 7, 8, 9 полученных при гадании.

Естественно также желание внедрить в построение известное уже распределение (по рис. 8) в его качественном и количественном исчислении.

Итак, чисто технически (см. Приложение) :

3.1.1. В додекаграммнике, квадрате (на плоскости) с клетками 8×8 мы вначале строим ось 1\64–64\1 по виду рис. 13 б) как костяк предстоящего построения. Фиксируем, записываем по сторонам суммы додекаграмм в «распределении Бу ши» (рис. 8), как запланированное построение. Традиционно, предполагаем, использовалась схема начертанных на плоскости клеточек 8×8 с перемещаемыми по ним бамбуковыми дощечками (24 шт +8 шт осевых) с начертанными гексаграммами (одна дощечка-две зеркальных гексаграммы) с названиями и формулами «первого слоя» (предположим снизу от гуа при порядке их считывания черт сяо).

3.1.2. Нижняя строка, как и ось, берется из анализа по «отклонению» рис. 15, и дощечки размещаем по ней в соответствующей ориентации (это ограничивает число комбинаций).

3.1.3.Рассматривая все возможные варианты комбинаций с условиями 3.1.1. и 3.1.2. и максимально близких к «распределению Бу ши» сумм мантических формул «первого слоя», наиболее близкие – это 14 комбинаций в Приложении. Причем, идентичные распределению Рис. 8–6 комбинаций, и с выправленной векторностью в верхней части – 8 штук. У всех 14 штук– 2 и 3 квадрант имеют только пары инверсных додекаграмм без изменения векторности (это наша изначальная установка), в 1 и 4-м квадрантах

Рис. 16 б) это комплексы, с первого по шестой, содержащие выбранные по рис. 14 додекаграммы (выделенный квадратик с крестиком – Х). Отображает рис. 14 в дифференцированном виде.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже