Именно так Алан Тьюринг начал свою знаменитую статью «Вычислительные машины и разум», опубликованную в 1950 году[6]
. С тех пор было много споров о «тесте Тьюринга»: может ли компьютер заставить нас поверить, что он человек? Сам Тьюринг никогда не утверждал, что компьютеры действительно способны думать. Однако это не помешало писателям-фантастам и простым обывателям представлять – обычно с ужасом – машины, наделенные человеческим сознанием.Это не про нас.
Тотальное очеловечивание, которое мы сейчас наблюдаем в развитии искусственного интеллекта, заключается не в воспроизведении человеческого сознания. Речь идет о решении проблем путем использования самых мощных когнитивных характеристик человека, усиленных вычислительными мощностями современных компьютеров. Это ведет нас не к господству машин, а к появлению более полных, эффективных, доступных и инновационных средств для решения социальных проблем и задач, стоящих перед коммерческими компаниями.
Любой машине, управляемой искусственным интеллектом, очень далеко до той легкости и эффективности, с которой даже малые дети учатся, понимают и воспринимают контекст. Если вы случайно уроните карандаш и годовалый ребенок увидит, как вы тянетесь за ним, он подберет его и подаст. Бросьте его специально – и ребенок проигнорирует это[8]
. Другими словами, даже груднички понимают, что у других людей есть намерения – выдающаяся когнитивная способность, которая, кажется, по умолчанию предустановлена в человеческий мозг.Но это еще не все. С самого раннего возраста у детей развивается интуитивное «чувство физики»: они начинают предугадывать, что предметы будут двигаться по плавным траекториям, не исчезнут сами по себе, что без опоры они упадут и что с ними нельзя взаимодействовать на расстоянии. Еще не научившись говорить, малыши отличают одушевленных существ от неодушевленных предметов. По мере освоения языка они проявляют замечательную способность к обобщению на основе очень небольшого ряда: им достаточно одного-двух примеров, чтобы понять значение нового слова[9]
. А еще дети самостоятельно, путем проб и ошибок, учатся ходить.Искусственный интеллект может делать многое из того, что от природы наделенные разумом люди считают невозможным или трудновыполнимым. Например: обнаруживать закономерности в огромных массивах данных; побеждать величайших шахматистов и чемпионов игры в го; запускать сложные производственные процессы; эффективно обслуживать клиентов в чатах и кол-центрах; анализировать изменения погоды, состояние почвы и спутниковые снимки, чтобы помочь фермерам повысить урожайность; сканировать миллионы интернет-изображений для борьбы с эксплуатацией детей; выявлять финансовые мошенничества; прогнозировать запросы потребителей; персонализировать рекламу и многое другое.
Автоматизация таких задач выходит за рамки не только возможностей человека, но и традиционной логики процедурного программирования. Самое главное, что искусственный интеллект позволил людям и машинам дополнять друг друга, превращая механистические процессы в высокоадаптивные, органичные и ориентированные на человека виды деятельности. Вопреки опасениям противников автоматизации, такое сотрудничество создает множество новых высокооплачиваемых рабочих мест[10]
.Неудивительно, что внедрение искусственного интеллекта стремительно набирает обороты во всех отраслях по всему земному шару. Согласно проведенному в 2019 году опросу, компании планировали в 2020 году удвоить число связанных с искусственным интеллектом проектов, а к 2022-му реализовать по 35 проектов в этой области или области машинного обучения[11]
. Для сравнения: в 2019 году таких проектов было в среднем 14 на компанию.Что ускоряет внедрение? В производстве используются новые модели искусственного интеллекта. Специализированное аппаратное обеспечение расширяет их возможности и помогает быстрее получать результаты обработки больших массивов данных. Упрощенные и меньшие по размеру инструменты позволяют ИИ работать практически на любом устройстве. Облачные сервисы обеспечивают доступ к ИИ-ресурсам из любой точки планеты и дают возможность масштабировать модели в соответствии с нуждами бизнеса.
Необходимость интегрировать данные из многих источников, решать сложные задачи бизнеса и компьютерной логики, а также конкуренция, заставляющая придавать данным более удобную для пользователей форму, ускоряют внедрение искусственного интеллекта. И конечно, оказалось очень велико влияние пандемии.