Читаем Душа машины. Радикальный поворот к человекоподобию систем искусственного интеллекта полностью

Наше недавнее исследование показало: более чем три четверти крупных компаний реализуют инициативы по глубокому обучению[12]. Глубокое обучение – это мощная подгруппа методов машинного обучения. В его основе лежат нейросети, состоящие из простых нейроноподобных блоков обработки данных, вместе выполняющих сложные вычисления. Работающий по этому принципу искусственный интеллект должен обучаться методом «снизу вверх» на огромном массиве данных и нередко для более тонкой настройки использовать дополнительные данные. Но этот «жадный до данных» подход имеет существенные ограничения – по мощности, доступности и устойчивости, как мы увидим в следующей главе.

Между тем на переднем крае исследований природа машинного интеллекта становится абсолютно человеческой – менее искусственной и более разумной, походящей не на беспилотный автомобиль, который нужно кропотливо тренировать, а на человеческого младенца, обладающего удивительно эффективной способностью к обучению.

Все это должно заставить топ-менеджеров задуматься о расходах на технологии в ближайшие три-пять лет. С одной стороны, стоящие перед глубоким обучением проблемы огромны и для многих компаний непреодолимы. С другой – глубокое обучение дало так много открытий и ценных результатов, что в ближайшее время оно не уйдет из практики. Согласно планам участвовавших в нашем опросе компаний, эти технологии из разряда необязательных перешли в необходимые.

Однако поиски искусственного интеллекта, наиболее близкого к человеческому, откладывались несколько десятилетий. Теперь же они обрели новую жизнь в попытках преодолеть ограничения нынешних подходов к интеллекту. Для высших руководителей это преодоление начинается с понимания имеющихся ограничений.

Проблема с интеллектом

Авторы MIT Technology Review проанализировали исследования в области искусственного интеллекта за последние 25 лет (а это 6625 научных работ) и пришли к выводу: глубокое обучение, доминировавшее в этой области последние десять лет, может пойти на спад[13]

. Однако оно не исчезнет – останется мощным инструментом для решения некоторых узкоспециальных задач.

Оно будет важным элементом в широком спектре сложных методов, которые в машинном интеллекте склонят чашу весов в пользу человеческого, а не искусственного. Но идея, что глубокое обучение – если ему только дать достаточно времени и скормить достаточно данных – приведет нас к созданию всеобъемлющего искусственного интеллекта, выглядит все менее вероятной.


Многие системы искусственного интеллекта не так уж и умны

Начнем с того, что системы глубокого обучения по необъяснимым причинам часто заходят в тупик. Рассмотрим, как искусственный интеллект распознает объекты на изображениях, – в последнее время это один из самых успешных примеров его применения, хотя с 2017 года прогресс здесь незначительный.

Проект ImageNet, поддерживаемый Стэнфордским университетом, представляет собой общедоступную базу вручную аннотированных изображений из более чем 14 миллионов экземпляров более чем 20 тысяч категорий. Этот массив данных использовался для обучения многих знакомых нам инструментов для идентификации изображений – таких, как Bing от Microsoft, например.

Однако около 7500 реальных фотографий, собранных исследователями, сбивают с толку современные системы компьютерного зрения (так, бегущий юноша на фото был принят за одноколесный велосипед), и при использовании подобных изображений точность падает с 95 до 2 %[14]. То есть отдельные из самых мощных в мире систем компьютерного зрения правильно идентифицируют эти изображения только в двух случаях из ста. А когда на кону не просто корректная классификация, а подлинное распознавание объекта, как в случае с управляемыми искусственным интеллектом автомобилями или дронами, неудачи могут иметь фатальные последствия.


Проблема черного ящика и работа сложных систем

Системы искусственного интеллекта часто используют при принятии важных решений. Кому одобрят кредит? Кого возьмут на работу? Кто получит условно-досрочное освобождение? На какой срок человек попадет в тюрьму? Почему беспилотный автомобиль совершает опасный маневр? Каким именно образом реклама компании распространяется в социальных сетях? И так далее. Однако многие из этих систем (особенно те, которые используют глубокое обучение) непрозрачны.

Невозможно объяснить, как алгоритмы, работающие с огромным количеством параметров и множеством хитросплетенных уровней абстрагирования, делают те или иные выводы. А ведь они иногда могут обернуться катастрофой – приводить к расовой дискриминации в сфере кредитования и судебных решений по уголовным делам, к чудовищным ДТП или к тому, что онлайн-реклама уважаемых брендов появится рядом с неонацистским или конспирологическим контентом.

Перейти на страницу:

Похожие книги

Руководство к своду знаний по управлению проектами (Руководство PMBOK®). Шестое издание. Agile: практическое руководство
Руководство к своду знаний по управлению проектами (Руководство PMBOK®). Шестое издание. Agile: практическое руководство

«Публикуемые Институтом управления проектами (Project Management Institute, Inc., сокращенно PMI) стандарты и руководства, к числу которых принадлежит и данный документ, разработаны согласно процессу разработки стандартов на основе добровольного участия и общего консенсуса. В ходе такого процесса объединяются усилия волонтеров и/или сводятся воедино замечания и мнения лиц, заинтересованных в предмете, которому посвящено данное издание. Хотя PMI администрирует этот процесс и устанавливает правила, гарантирующие непредвзятость при достижении консенсуса, PMI не занимается написанием документа, а также независимым тестированием, оценкой и проверкой точности или полноты материала, содержащегося в издаваемых PMI стандартах и руководствах. Подобным же образом, PMI не занимается проверкой обоснованности мнений, высказанных в этих документах…»

Коллектив авторов

Менеджмент / Финансы и бизнес
Психология лидерства: теория и практика
Психология лидерства: теория и практика

В настоящем учебном пособии систематизирован теоретический материал: теории личностных качеств, ситуационного подхода, аналитической теории А. Адлера о детерминантах лидерства в исследованиях феномена лидерства. Представлена психология современного лидера, в частности, политического лидера.Показано развитие лидерских качеств путем психокоррекционой практики, и психологическое консультирование, выступающее средством оптимизации уже имеющихся личностных качеств у лидера, а также психотерапевтическая практика работы с лидерами. Представлены традиционные и оригинальные тесты, методики и ключи к ним.Учебное пособие рекомендовано обучающимся по направлениям подготовки 37.03.01 Психология (уровень бакалавриата), 37.04.01 Психология (уровень магистратуры) всех форм обучения и призвано оказать помощь в освоении учебных дисциплин «Социальная психология», «Психология личности», «Психология карьеры», «Психодиагностика и практикум по психодиагностике».Адресовано психологам, управленцам высшего и среднего звена, преподавателям высших учебных заведений и слушателям дополнительного профессионального образования, а также организаторам и участникам избирательных кампаний.

Анна Васильевна Шилакина , Екатерина Сергеевна Шульгина , Елена Юрьевна Мазур , Наталья Александровна Шилакина

Менеджмент / Финансы и бизнес
В поисках идеального потока. История Производственной системы Росатома
В поисках идеального потока. История Производственной системы Росатома

Покупая эту книгу, вы помогаете детям получить ценный опыт. Ведь все средства, полученные от продажи, идут на организацию школьных поездок на промышленные предприятия страны. Благодаря им ребята узнают о технических специальностях и знакомятся с передовыми методами бережливого производства. Производственной системе Росатом 17 лет. Мне уготовано было быть лидером ее развития с первого же дня. Сегодня она работает везде от заводов и строек до школ и поликлиник. Наш руководитель Лихачев Алексей Евгеньевич как-то сказал, что производственная система Росатом стала культурным кодом атомной отрасли, своеобразной религией госкорпорации. Об этом и книга. С чего все начиналось и кто стоял у истоков? С какими трудностями пришлось столкнуться в начале пути? И благодаря кому и чему удалось эти трудности преодолеть? Об этом и многом другом конкретно и поэтапно.

Сергей Александрович Обозов

Менеджмент / Финансы и бизнес