В результате испытаний ядерного оружия в 1950-х и 1960-х годах образовалось большое количество углерода-14, который распространился во всей атмосфере. Некоторая часть этого углерода вошла в контакт с поверхностью океанических вод, и, поскольку водные массы с поверхности перемещались в глубины океанов и морей, можно было с большой точностью измерить и проследить радиоактивный распад изотопа, получив своего рода хронометр. Произведя обратные вычисления, чтобы вернуться к изначальному содержанию углерода-14 в атмосфере, океанографы смогли определить, насколько давно воды того или иного океанического бассейна вступали в контакт с атмосферой. На основании подобного анализа можно утверждать, что глубинные массы вод современного Черного моря в последний раз соприкасались с атмосферой около 1500 лет тому назад, и, хотя по геологическим меркам это не столь уж долгое время, его было достаточно, чтобы весь кислород, продуцированный ниже верхнего стометрового слоя, оказался очень быстро поглощен после того, как эти водные массы вновь погрузились в глубину. Водные массы глубинных слоев современного Черного моря оставались без кислорода на протяжении самое меньшее 8000 лет.
Хоть мы и не можем сказать, что микроорганизмы глубин Черного моря в буквальном смысле существуют миллиарды лет, они являются живыми ископаемыми в том смысле, что у них сохранились метаболические процессы – или, попросту говоря, внутренние механизмы, возникшие на самой заре земной истории. По существу, они донесли до наших дней метаболизм организмов, населявших Мировой океан миллиарды лет тому назад. Попытавшись разобраться в их метаболизме, мы можем получить представление о том, как происходили жизненные процессы в мире, исчезнувшем давно и навсегда. Однако это позволяет не только понять жизненные процессы, происходившие миллиарды лет тому назад, – мы можем и нечто большее: посредством изучения этих древних микроорганических механизмов мы также получаем возможность понять связи между микроорганизмами и всеми существующими растениями и животными, включая нас самих.
Давайте же заглянем «под капот», чтобы увидеть, как работают некоторые из механизмов, дающих жизнь этим невидимым созданиям. Попробуем исследовать, как микроорганизмам удалось создать в своих клетках эти механизмы, ставшие впоследствии двигателями жизни на Земле и ключом к обитаемости нашей планеты.
Глава 4. Маленькие двигатели жизни
Едва ли Роберт Гук мог предвидеть значимость сделанного им описания микроскопических клеток в тонком куске пробки, который он отрезал перочинным ножом. На протяжении более чем трех столетий, минувших с того времени, когда Гук впервые изобразил очертания структур клеток, ученые потратили много времени и усилий, чтобы понять, как же эти клетки – мельчайшая форма жизни, способная к самовоспроизведению, – функционируют. Эти усилия были направлены прежде всего на то, чтобы понять скрытые внутри клетки механизмы, позволяющие ей получать энергию, расти и размножаться. И хотя мы не знаем всех ответов, нам уже известно, что, как в кукле-матрешке, внутри отдельных контейнеров самих клеток имеются контейнеры меньшего размера, выполняющие каждый свою специфическую функцию. За неимением более простого термина я называю эти заключенные в клетках меньшие контейнеры наномеханизмами жизни. Это агрегаты, составленные главным образом из белков и нуклеиновых кислот и выполняющие необходимые функции во всех живых клетках. Я потратил немалую часть своей научной жизни, пытаясь понять, как они работают.
Понимание того, как работают эти наномеханизмы, имеет значение, поскольку их внутренняя работа позволяет нам увидеть, как основные процессы копируются и преобразуются в различных формах. Это аналогично тому, как если бы мы, взяв детали из магазина радиотоваров, собирали усилители, радиоприемники, телевизоры и любые другие устройства, какие можно придумать. В природе встречаются наномеханизмы самых разных типов. Как я уже говорил, одни из древнейших – рибосомы – возникли у предков современных микроорганизмов миллиарды лет тому назад. В пятой главе мы еще вернемся к этому первобытному миру древних микроорганизмов, но сначала давайте рассмотрим другие наномеханизмы и поймем, как они функционируют внутри клеток.