Благодаря более совершенным объективам, красителям и микроскопам с еще большим увеличением в течение относительно короткого отрезка времени было сделано несколько открытий. В 1883 году еще один ботаник, немец Андреас Шимпер, обнаружил, что крахмал, окрашивающийся в присутствии йода в темно-бурый цвет, производится в растениях микроскопическими зелеными тельцами, которые он назвал
Структуры, размеры которых составляют меньше тысячной доли миллиметра (иначе говоря, микрометра), попросту очень трудно разглядеть в деталях при помощи видимого света. Диаметр человеческого волоса составляет около 100 микрометров, диаметр же большинства бактерий и других микроорганизмов – около 1–2 микрометров, а порой даже меньше. Чтобы разглядеть их невооруженным глазом, нужно выстроить в ряд около 100 таких клеток, и тогда их длина будет равна диаметру человеческого волоса. И поскольку эти микроорганизмы так малы, для нас практически невозможно различить находящиеся внутри них структуры. Есть ли там миниатюрные ядра? Митохондрии? Хлоропласты? Эта попытка визуализации внутриклеточных структур может напомнить выдвинутую ранее Левенгуком концепцию анималькулей, которых он представлял как микроскопических животных. На протяжении нескольких десятилетий научный прогресс в области изучения очень маленьких клеток или маленьких частей внутри крупных клеток оказался застопорен из-за ограничений в разрешении и увеличительной способности оптических микроскопов.
Прорыв в этом направлении произошел в 1930-х годах, когда два немецких физика, Макс Кнолль и его студент Эрнст Руска, разработали микроскоп нового типа, в котором использовались высокоэнергичные электроны – они ускорялись в вакууме и как лучи проецировались на образец, который либо поглощал их, либо пропускал, либо рассеивал. Получившееся изображение могло передавать структуры с разрешением в десятые доли микрометра, то есть с более чем в сто раз большим увеличением, чем то, какое было достижимо в оптических микроскопах. Открылся целый новый мир – мир, в котором мы впервые действительно получили возможность заглянуть клеткам «под капот».
Изучение клеток под электронным микроскопом тотчас же подтвердило существование ядер, аппаратов Гольджи, митохондрий и хлоропластов у эукариотических клеток. Однако, к удивлению ученых, оно также раскрыло, что у многих микроорганизмов эти структуры отсутствуют. Судя по всему, число матрешек среди микробов было ограничено. Организмы, внутри которых не были найдены такие автономные, заключенные в мембраны структуры, были объединены учеными в группу, получившую название
Одними из таких универсальных элементов оказались рибосомы. Впервые они были обнаружены в 1955 году румынским биологом Джорджем Паладе, который работал в Рокфеллеровском институте (теперь университете) в Нью-Йорке. При помощи лучших из доступных в то время электронных микроскопов Паладе описал эти структуры в образцах клеток млекопитающих и птиц (и те и другие являются эукариотами). Рибосомы были похожи на очень маленькие ворсистые шарики, которые либо свободно плавали во внутриклеточной жидкости, либо группировались вдоль определенных внутренних мембран. Паладе обнаружил, что эти маленькие шарики содержат как белки, так и нуклеиновые кислоты, но роль этих крошечных компонентов клетки оставалась невыясненной еще более десяти лет. Было очевидно, однако, что та нуклеиновая кислота, которая находится в ядре, представляет собой ДНК, в то время как в рибосомах содержится рибонуклеиновая кислота – другой тип нуклеиновой кислоты с другим сахаром, рибозой, имеющей на один атом кислорода больше, чем дезоксирибоза, найденная в ДНК. Впоследствии эти маленькие шарики стали называть