Рис. 23. Изображение гетероцисты. В некоторых образующих нити видах цианобактерий (см., например, рис. 17,
В случае с нитрогеназой решением было физически отделить механизм от кислорода. В некоторых случаях клетки, содержащие фермент, были ограничены анаэробной средой; в других случаях развились специализированные клетки, которые были несколько менее проницаемы для кислорода, чем для азота (а это очень непросто, поскольку физический размер молекул этих газов практически одинаков). Еще в каких-то случаях были добавлены специальные процессы, поглощавшие или физически удалявшие кислород из аппарата нитрогеназы. Ни в одном из этих случаев решение нельзя назвать совершенным. В современных океанах в каждый отдельно взятый момент времени из-за кислорода бездействует около 30 % всей нитрогеназы. Это означает постоянное пополнение свалки использованных деталей, которые в конечном счете должны быть возвращены в оборот для производства новых наномеханизмов.
Последний пример еще более ошеломляющ. Он относится к очень старому наномеханизму – рубиско (акроним, образованный из названия рибулозобифосфаткарбоксилаза/оксигеназа). Рубиско представляет собой белковый комплекс, отвечающий за связывание углекислого газа во всех производящих кислород фотосинтезирующих организмах, а также у ряда других микроорганизмов, включая многих хемоавтотрофов. Иногда говорят, и не без основания, что рубиско – самый распространенный белок на планете; тем не менее, хотя он и отвечает за образование большей части клеточного вещества на Земле, это довольно неэффективный фермент.
Рубиско не так уж сложен, однако представляет собой большой белковый комплекс: он подразделяется на две подсистемы, которые должны работать вместе. Когда фермент работает как надо, он забирает углекислый газ, растворенный в воде, и присоединяет его к пятиуглеродному сахару, имеющему две фосфатные «рукоятки» (рибулозобифосфат), образуя две идентичные трехуглеродные молекулы. Этот процесс считается, хотя и небесспорно, самой важной биохимической реакцией на Земле. Это первый шаг, ведущий к фотосинтетическому образованию приблизительно 99 % органических соединений, от которых зависит вся остальная жизнь. Само существование всех животных, включая нас с вами, полностью зависит от рубиско.
Как и D1 с нитрогеназой, рубиско возник задолго до того, как в атмосфере нашей планеты появился кислород, но, кроме того, это произошло в те времена, когда концентрация углекислого газа была во много раз выше, нежели сейчас. В тех условиях рубиско функционировал вполне неплохо. В присутствии кислорода, однако, фермент часто ошибочно принимает его за углекислый газ, хотя это и довольно сложно себе представить, поскольку у этих двух молекул совершенно различная структура. Тем не менее, если рубиско допускает эту ошибку, он включает в свой состав кислород, вырабатывая бесполезный продукт. Такое случается примерно в 30 % случаев у всех растений и представляет собой напрасную трату большого количества энергии.
Подливает масла в огонь еще и то, что этот связывающий углерод наномеханизм работает очень, очень медленно. Каждая молекула рубиско выдает продукт всего лишь около пяти раз за секунду – примерно в 100 раз медленнее, чем большинство других ферментов в типичной фотосинтезирующей клетке. Даже наиболее эффективные, последние из появившихся в процессе эволюции аппараты рубиско очень неторопливы по сравнению со многими другими наномеханизмами клеток.