Читаем Двигатели жизни полностью

Можно было бы подумать, что, имея настолько медленный, неэффективный механизм и несколько сотен миллионов лет на его преобразование при помощи мутаций и последующего отбора, природа должна была изобрести более совершенную систему. Примечательно, однако, что этого так и не произошло. Хотя некоторые незначительные усовершенствования и имели место, основное решение оставалось тем же: клетки продолжали вырабатывать этот фермент. Это крупное капиталовложение для фотосинтезирующего организма. Для выработки рубиско требуется много азота, которому могло бы найтись лучшее применение. Так, новые клетки можно было бы строить гораздо быстрее, если бы не несовершенства наномеханизма, отвечающего за связывание углерода.

Принимая во внимание несовершенства этого и многих других ключевых аппаратов клетки, можно задаться вопросом, почему эти механизмы не эволюционировали, чтобы стать более эффективными. Почему гены, кодирующие эти «застывшие метаболические случайности», неспособны выработать более работоспособный аппарат? Ответ, судя по всему, достаточно прост и прямолинеен. В большинстве случаев наномеханизмы состоят из нескольких компонентов, действующих как единое целое, – это в буквальном смысле механизмы, которые физически двигаются. Движение и ориентация всего этого комплекса зависят от его отдельных компонентов. И если незначительные изменения в одной из частей могут никак не влиять на способность всего наномеханизма к движению, то крупные изменения в одном компоненте без одновременных изменений в других могут привести к потере возможности функционировать. В конечном счете решение, найденное природой, было аналогично тому, которое приняла компания Microsoft. Когда в Microsoft была разработана операционная система для компьютеров, программное обеспечение вполне подходило для первых машин, однако, по мере того как машины становились все сложнее, Microsoft добавлял все новые и новые апдейты, модифицирующие старую операционную систему, вместо того чтобы заново разрабатывать ее с нуля. Так же и природа, вместо того чтобы заново строить с нуля клеточные механизмы, пускает в оборот старые, слегка их модифицируя или разрабатывая набор новых компонентов, помогающих им функционировать в изменяющейся среде. По сути, природа так же добавляет новые «апдейты» к уже имеющимся механизмам.

В то время как гены, отвечающие за ключевые наномеханизмы, чрезвычайно консервативны, многие из остальных 99,98 % имеющихся в живых организмах генов обладают высокой изменчивостью. Это означает, что ключевые механизмы обнаруживаются у очень широкого круга организмов, зачастую имеющих очень отдаленных друг от друга эволюционных предков. Например, у микроорганизмов нитрогеназа найдена у множества групп бактерий и нескольких групп архей (но ни в одной из известных групп эукариотов). Точно так же рубиско найден у многих организмов, имеющих очень мало общего. Одна форма рубиско, превалирующая у бактерий, также была найдена у динофлагеллятов, являющихся водорослями-эукариотами, но у других эукариотов ее нет. На самом деле закономерности распределения большинства ключевых наномеханизмов на генеалогическом древе жизни зачастую непредсказуемы.


Рис. 24. Распределение генов нитрогеназы на генеалогическом древе жизни. Отметим, что закономерности этого распределения не коррелируют с происхождением видов от общего предка; фактически эти закономерности не так легко предсказуемы. Эти гены (как и многие другие) были получены посредством горизонтального переноса генов внутри домена бактерий и между бактериями и археями. В геномах эукариотических клеток азотфиксирующие гены найдены не были. (Публикуется с разрешения Эрика Бойда.)


Построение генеалогий живых организмов относительно нитрогеназы, рубиско и многих других ключевых генов ясно показывает, что дарвиновская модель эволюции по происхождению с вариациями здесь неприменима. Может быть, предложенная Дарвином концепция эволюции вообще неверна?

Перейти на страницу:

Все книги серии Pop Science

Двигатели жизни
Двигатели жизни

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Пол Фальковски

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Пол Хэлперн

Биографии и Мемуары / Научная литература / Физика / Прочая научная литература / Научпоп / Образование и наука
Остров знаний
Остров знаний

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня. Авторитетная и энциклопедическая история смысла и знаний, поведанная в этой книге, рассказывает, что такое «быть человеком» во Вселенной, полной тайн.

Марсело Глейзер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука