Читаем Двигатели жизни полностью

Третье свойство – разнообразие клеточных функций – один из наиболее интересных моментов в биологии животных и растений. Даже у простейших животных и растений имеется несколько различных типов клеток. У животных существуют различные виды нервных клеток, клеток кожи, пищеварительных клеток и так далее. У растений клетки листьев, корней и побегов различаются между собой. Все эти разнообразные клетки взрослого организма происходят от одной-единственной – оплодотворенной яйцеклетки. Независимо от того, какова функция клеток во взрослом организме, в каждой из клеток, сохранивших ядро, генетический материал идентичен тому, что содержится в остальных клетках. Вот почему мы можем взять клетки из нашей слюны, кожи, кости, печени или легких и анализировать собственный геном. Однако каждый из этих типов клеток призван выполнять свой собственный набор функций, и эти функции закодированы в генах каждого организма. Процесс, при котором клетка получает свою специализацию внутри консорции, называется дифференциацией. У животных клетки, которым еще не была определена собственная специфическая функция, называются

стволовыми клетками – это клетки, которые можно убедить стать той или иной из множества типов клеток: нервной клеткой или клеткой печени и так далее. Однако откуда взялись все эти различные типы клеток в многоклеточных организмах?

У цианобактерий, формирующих колонии, существуют такие клетки, которые теряют свою фотосинтезирующую способность и начинают специализироваться на связывании азота. Этот новый тип клеток крупнее, имеет более толстую клеточную стенку, а также является единственным типом клеток внутри колонии, который может связывать азот, образуя аммоний. Кроме того, такую клетку невозможно убедить снова начать фотосинтезировать – даже несмотря на то, что у нее сохранились все необходимые для этого гены.

Существует несколько других примеров дифференциации. Многие одноклеточные эукариоты подвергаются тому или иному виду генетической рекомбинации и при этом трансформируют свои клетки из одной формы в другую. Генетическая рекомбинация – это такое модное словечко, означающее секс: две клетки, каждая из которых имеет половину хромосомного набора родительской клетки, комбинируют генетическую информацию, формируя новую клетку, которая начинает воспроизводиться. У одноклеточных эукариотов зародышевые клетки часто совершенно не похожи на родительские. В действительности зачатки полового размножения уходят далеко к истокам эволюционной истории; они найдены в современных эукариотических водорослях. «Споры», или зародышевые клетки, имеют половинный набор хромосом – индивидуальных сегментов генетической информации, хранящейся в ядре каждой клетки – от родительской клетки, и зачастую имеют очень различные формы.

Дифференциация клеток стала фирменным знаком как животной, так и растительной эволюции. По мере развития многоклеточных организмов отдельные клетки приобретали определенные функции. У низших животных и большинства растений организм может воспроизводиться без половой рекомбинации – можно просто взять какую-либо часть организма и вырастить ее, если иметь достаточно энергии и источников питания. В таких случаях клетки сохраняют достаточную гибкость для приобретения новых функций. Тем не менее в процессе эволюции все более и более сложных животных организмов эта гибкость была потеряна, и единственным путем возникновения новых организмов осталась половая рекомбинация – четвертое из перечисленных свойств.

Половое размножение ведет к формированию оплодотворенной единичной клетки – зиготы, в которой затем происходит дифференциация в новые типы клеток по мере ее деления и развития в эмбрион. Информационная система, отвечающая за развитие и организацию клеток у животных и растений, достигла небывалой сложности, однако основной набор инструментов был позаимствован у их одноклеточных прародителей и аналогичен кворумному восприятию в микробиотических сообществах.

У животных развился набор молекул, направляющий транскрипцию генов в клетках. Эти транскрипционные факторы, со временем ставшие весьма изощренными, размещают развивающийся организм животного вдоль некоторой оси и направляют деление и функционирование клеток. Так, например, у животных набор генов гомеобокса (или, на научном жаргоне, Hox-генов) включает и выключает сотни генов во время развития эмбриона; транскрипционные факторы наподобие Hox-генов зачастую невероятно консервативны. Впервые они были открыты в 1984 году у плодовой мушки дрозофилы, но впоследствии ученые поняли, что такие же гены встречаются во всем животном царстве – от медуз до человека.

Перейти на страницу:

Все книги серии Pop Science

Двигатели жизни
Двигатели жизни

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Пол Фальковски

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Пол Хэлперн

Биографии и Мемуары / Научная литература / Физика / Прочая научная литература / Научпоп / Образование и наука
Остров знаний
Остров знаний

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня. Авторитетная и энциклопедическая история смысла и знаний, поведанная в этой книге, рассказывает, что такое «быть человеком» во Вселенной, полной тайн.

Марсело Глейзер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука