Читаем Эйлер. Математический анализ полностью

Жизнь Эйлера можно разделить на четыре основных периода: первый, до 1727 года — обучение; затем 14 лет в Академии наук, основанной Петром I в Санкт-Петербурге; до 1766 года — работа в Берлинской академии наук; наконец, возвращение в Россию, где он и умер. В конце первого периода, ознаменовавшегося знакомством с братьями Бернулли, которые разглядели в ученом интерес к анализу, Эйлер сделал одно из самых важных своих открытий — формулу, позже названную его именем. При помощи математической константы е она связывает комплексное число i и тригонометрические функции синус и косинус:

exi = cosx + isinx.

Число е, лежащее в основании натуральных логарифмов, часто встречается в работах Эйлера и иногда называется числом Эйлера. Несколько десятилетий спустя на основе этой формулы ученый развил большую часть своих работ по анализу.

Первый русский период Эйлера можно считать самым плодотворным в его научном творчестве. Как можно предположить, зная о продуктивности Эйлера, открытия, совершенные в это время, настолько многочисленны, насколько и удивительны.

Только в области анализа ученый нашел способ точного вычисления числа е и определил многие его свойства; открыл гамма-функцию (Г), которая позволяет интерполировать значения функций определенного вида и используется в комбинаторике, теории вероятностей, теории чисел и физике; открыл формулу Эйлера — Маклорена для вычисления сумм и интегралов; решил (и впоследствии обобщил полученные результаты) Базельскую задачу, поставившую вопрос о сумме ряда

1 + 1/2 + 1/3 + 1/4 + ...

К этому же периоду относятся важные работы по теории чисел, такие как определение постоянной Эйлера — Мас- керони, изучение так называемых чисел Ферма и решение задачи о мостах Кенигсберга в 1736 году, приведшее к созданию совершенно новой области математики — теории графов. В 1741 году Эйлер принял предложение Фридриха Великого, короля Пруссии, и переехал в Берлин. Ученый продолжал делать одно открытие за другим. Среди них мы можем упомянуть о формуле для многогранников, связывающей грани (F), ребра (S) и вершины ( V) многогранника простым и неожиданным для геометров того времени образом:

C - A + V = 2,

а также определение прямой Эйлера. К этому периоду относятся работы над проблемой Гольдбаха, самой знаменитой теоремой о числах после Великой теоремы Ферма, и исследования в области вариационного исчисления, имевшего огромное значение для физики. Именно в Берлине Эйлер написал трактаты, посвященные анализу (возможно, это самые гениальные его сочинения), а также труды по инженерному делу и механике.

Последний этап своей жизни Эйлер вновь провел в Санкт- Петербурге. Ему было уже больше 50 лет, он испытывал большие трудности со зрением, но до самой смерти продолжал писать научные статьи. Ставший легендой мировой математики еще при жизни, в этот период Эйлер в основном занимался теорией чисел, в частности простыми числами (и связанными с ними, такими как числа Мерсенна и дружественные числа), диофантовыми уравнениями и разбиением множеств. Он также нашел время для более легкомысленных задач — магических квадратов и других математических игр — и даже создал игру для детей (круги Эйлера), дошедшую до наших дней. Кроме того, он написал превосходную научно-популярную работу о вопросах механики и астрономии, которую посвятил принцессе Ангальт-Дессау.

1707 15 апреля в Базеле, Швейцария, родился Эйлер.

1720 При поддержке Иоганна Бернулли Эйлер в возрасте всего лишь 13 лет поступает в Базельский университет.

1723 Получает степень магистра философии за сравнительный анализ идей Декарта и Ньютона.

1727 Не получив место профессора физики в Базельском университете, переезжает в Россию.

1731 Становится профессором физики в Петербургской академии наук. Положение, которое он теперь занимает, делает его фигуру одной из самых влиятельных среди ученых.

1734 Женится на Катерине Гзель, дочери художника Академии. У них будет 13 детей, из которых выживут только пять.

1735 Ученый начинает терять зрение, что, тем не менее, не мешает ему решить знаменитую Базельскую задачу и прославиться в научном мире.

1736 Выходит первая книга Эйлера. Он решает задачу о мостах Кенигсберга. Известность ученого продолжает расти.

1741

Принимает предложение Фридриха II, короля Пруссии, и вместе с семьей переезжает в Берлин, где получает место в Академии.

1742 Эйлер и Гольдбах в переписке обсуждают задачу, позже названную проблемой Гольдбаха.

1748 Эйлер публикует один из самых известных своих трудов — 4 Введение в анализ бесконечно малых", — в котором рассматривает в основном математические функции.

1755 Издается еще одна фундаментальная работа ученого — "Дифференциальное исчисление".

1766 Вследствие идейных расхождений с Фридрихом II Эйлер снова уезжает в Россию.

1768 Выходит третье сочинение Эйлера

1770 по математическому анализу — "Интегральное исчисление".

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Империи Древнего Китая. От Цинь к Хань. Великая смена династий
Империи Древнего Китая. От Цинь к Хань. Великая смена династий

Книга американского исследователя Марка Эдварда Льюиса посвящена истории Древнего Китая в имперский период правления могущественных династий Цинь и Хань. Историк рассказывает об особой роли императора Цинь Шихуана, объединившего в 221 г. до н. э. разрозненные земли Китая, и формировании единой нации в эпоху расцвета династии Хань. Автор анализирует географические особенности Великой Китайской равнины, повлиявшие на характер этой восточной цивилизации, рассказывает о жизни в городах и сельской местности, исследует религиозные воззрения и искусство, а также систему правосудия и семейный уклад древних китайцев. Авторитетный китаист дает всестороннюю характеристику эпохи правления династий Цинь и Хань в истории Поднебесной, когда была заложена основа могущества современного Китая.

Марк Эдвард Льюис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература