В 1968 г. молодой физик-теоретик Габриэле Венециано корпел над осмыслением многочисленных экспериментально наблюдаемых характеристик сильного ядерного взаимодействия. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве (Швейцария), трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка. К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях — так называемая бета-функция Эйлера, — похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и ее различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру. Однако в определенном смысле наблюдение Венециано было неполным. Подобно зазубренной наизусть формуле, используемой студентом, который не понимает ее смысла или значения, бета-функция Эйлера работала, но никто не понимал почему. Это была формула, которая требовала объяснения. Положение дел изменилось в 1970 г., когда Йохиро Намбу из Чикагского университета, Хольгер Нильсен из института Нильса Бора и Леонард Сасскинд из Станфордского университета смогли выявить физический смысл, скрывавшийся за формулой Эйлера. Эти физики показали, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами сильное взаимодействие этих частиц в точности описывается с помощью функции Эйлера. Если отрезки струн являются достаточно малыми, рассуждали эти исследователи, они по-прежнему будут выглядеть как точечные частицы, и, следовательно, не будут противоречить результатам экспериментальных наблюдений. Хотя эта теория была простой и интуитивно привлекательной, вскоре было показано, что описание сильного взаимодействия с помощью струн содержит изъяны. В начале 1970-х гг. специалисты по физике высоких энергий смогли глубже заглянуть в субатомный мир и показали, что ряд предсказаний модели, основанной на использовании струн, находится в прямом противоречии с результатами наблюдений. В то же время параллельно шло развитие квантово-полевой теории — квантовой хромодинамики, — в которой использовалась точечная модель частиц. Успехи этой теории в описании сильного взаимодействия привели к отказу от теории струн.
Большинство специалистов по физике элементарных частиц полагали, что теория струн навсегда отправлена в мусорный ящик, однако ряд исследователей сохранили ей верность. Шварц, например, ощущал, что «математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое».[46]
Одна из проблем, с которыми физики сталкивались в теории струн, состояла в том, что она, как казалось, предоставляла слишком богатый выбор, что сбивало с толку. Некоторые конфигурации колеблющихся струн в этой теории имели свойства, которые напоминали свойства глюонов, что давало основание действительно считать ее теорией сильного взаимодействия. Однако помимо этого в ней содержались