Существенным недостатком аналогии с конькобежцами является то, что обмен шарами для боулинга всегда приводит к «отталкиванию»: он увеличивает расстояние между конькобежцами. С другой стороны, две частицы, несущие противоположный заряд, также взаимодействуют между собой, обмениваясь фотонами, но результирующая электромагнитная сила является притягивающей. Это выглядит так, как если бы фотон был переносчиком не взаимодействия как такового, а скорее
Калибровочная симметрия
Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трёх других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля,
Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели — независимо от состояния движения — являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчёта. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.
Для того чтобы получить общее представление об этих достаточно тонких принципах симметрии, рассмотрим один важный пример. Как указано в таблице, содержащейся в примечании
{1}, каждый кварк может быть окрашен в один из трёх «цветов» (вычурно названных красным, зелёным и синим, хотя это не более чем условность и не имеет никакого отношения к цвету в обычном понимании этого слова). Эти цвета определяют его реакцию на сильное взаимодействие точно так же, как электрический заряд определяет реакцию на электромагнитное взаимодействие. Все полученные к настоящему времени данные свидетельствуют о том, что между кварками наблюдается симметрия: все взаимодействия между одноцветными кварками (красного с красным, зелёного с зелёным или синего с синим) являются идентичными, как и идентичными являются взаимодействия между разноцветными кварками (красного с зелёным, зелёного с синим или синего с красным). На самом деле факты ещё более поразительны. Если три цвета, т. е. три различных сильных заряда, сдвинуть определённым образом (грубо говоря, если на нашем вычурном цветовом языке красный, зелёный и синий изменятся и станут, например, жёлтым, индиго и фиолетовым), то даже если параметры сдвига будут меняться от одного момента времени к другому и от точки к точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: она является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо от того, как мы вращаем её в руках и под каким углом на неё смотрим. Аналогично можно сказать, что наша Вселенная обладает