Рисунок 6.8.
Первые электрические моторы вращали более короткие валы для меньших групп машин. После 1900 года персональные приводы постепенно сделались нормой в производстве. Между 1899 и 1929 годами общая номинальная механическая мощность американской промышленности примерно учетверилась, а мощность индустриальных электромоторов выросла почти в 60 раз и достигла почти 82 % общей доступной мощности, по сравнению с менее чем 5 % в конце XIX века (USBC 1954; Schnurr et al. 1990). После этого доля электрической мощности изменялась мало: замещение паровых и приводимых в движение водой механизмов на моторы было практически завершено всего через три десятилетия после начала этого процесса в конце 1890-х годов. Этот эффективный и надежный источник энергии не только удалил постоянный грохот над головой и повышенную опасность несчастных случаев. Устранение древней трансмиссии освободило потолок для установки лучшего освещения и вентиляции, обеспечило возможность роста производственных площадей и гибкую организацию производства. Высокая эффективность электрических моторов в комбинации с точным, гибким, индивидуальным контролем мощности в лучшей рабочей среде привела к росту производительности труда.
Электрификация также открыла дорогу для множества специализированных отраслей. Первой стало производство ламп, динамо и проводки (после 1880 года), а также паровых и водяных турбин (после 1890-го). Котлы высокого давления на измельченном в порошок угле появились после 1920 года; создание огромных плотин, использующих большое количество железобетона, началось десятилетием позже. Широкое распространение приборов контроля за загрязнением воздуха началось после 1950 года, а первые атомные электростанции появились до 1960-го. Рост спроса на электричество также стимулировал геофизические исследования, добычу топлива и расширение транспортной сети. Немалый объем фундаментальных исследований в материаловедении, автоматизации и метрологии потребовался для того, чтобы получить лучшую сталь, другие металлы и сплавы, увеличить надежность и срок службы дорогих устройств для извлечения, транспортировки и конвертации энергии.
Доступность надежного и дешевого электричества преобразовала буквально каждый вид промышленной деятельности. Вне всяких сомнений, самое большое воздействие на производство оказало широкое распространение сборочных линий (Nye 2013). Классическая, ныне устаревшая, негибкая разновидность, использованная Фордом, базировалась на конвейере, изобретенном в 1913 году. Современная, гибкая японская разновидность полагается на доставку комплектующих «строго вовремя», и на рабочих, способных выполнять ряд различных задач. В системе, представленной на фабриках «Тойоты», скомбинированы элементы американской практики с новыми хитроумными подходами и оригинальными идеями (Fujimoto 1999). Производственная система «Тойоты» (kaizen) базируется на постоянном совершенствовании продукта и самоотверженном стремлении к лучшему контролю качества. И снова фундаментальная унификация всех этих действий минимизирует потери энергии.
Доступность недорогого электричества также способствовала появлению новых металлургических и электрохимических отраслей. Электричество обеспечило масштабную плавку алюминия электролизом глинозема (А12
O3), растворенного в электролите, обычно криолите (Na3AlF6). С 1930-х годов электричество незаменимо в синтезе все растущего набора различных пластмасс, а с недавнего времени – в освоении производства новых композитных материалов, в первую очередь углеродных волокон. Энергетические затраты на эти материалы примерно в три раза выше, чем на алюминий, но их первым полем приложения стало как раз вытеснение алюминиевых сплавов из авиастроения: новейший «Боинг-787» почти на 80 % состоит из композитов.