Примечание 6.4. Увеличение объема домн и баланс массы и энергии в них
Немногие производственные структуры со средневековой родословной остаются столь же важными для функционирования современной цивилизации, как доменные печи. Как отмечено в главе 5, новый дизайн Белла в 1840 году увеличил в пять раз их внутренний объем, доведя его до 250 м3
. К 1880 году крупнейшие домны превзошли 500 кубометров, достигли 1500 м3 к 1950-му, а к 2015 году рекорд внутреннего объема находился между 5500 и 6000 м3 (Smil 2016). В результате рост продуктивности привел к тому, что выход горячего металла поднялся с 50 т/сут. в 1840 году до более 400 т/сут. к 1900-му. Отметка в 1000 т/день была достигнута перед Второй мировой войной, а сегодняшние крупнейшие домны производят около 15 000 т/сут., с рекордным показателем для печи Pohang-4 компании POSCO (Южная Корея) 17 000 т/день.Для функционирования больших домен требуются колоссальные потоки массы и энергии (Geerdes, Toxopeus and Van der Vliet 2009; Smil 2016). Для домны, производящей 10 000 тонн железа вдень, чтобы загружать сырьем прилегающий кислородный конвертер, потребуется 5,11 Мт руды, 2,92 Мт угля, 1,09 Мт флюсового сырья и около 0,5 Мт стального скрапа. Большой интегрированный сталелитейный завод, таким образом, каждый день потребляет около 10 Мт материалов. Современные домны производят горячий металл непрерывно 15–20 лет, а затем их отражательная кирпичная поверхность и горн из углеродистых блоков обновляют.
Выигрыш в продуктивности сопровождался снижением потребления кокса. В 1900 году типичные потребности в коксе составляли 1–1,5 тонн на одну тонну горячего металла, к 2010 году национальные показатели составили около 370 кг/т в Японии и менее 340 кг/т в Германии (Юпдеп 2013). Энергетические затраты при плавке железа на коксе упали с около 275 ГДж/т в 1750 году до около 55 ГДж/т в 1900-м, приблизились к 30 ГДж/т в 1950-м, а в 2010 году лежали между 12 и 15 ГДж/т.
Рисунок 6.9.