Среднебойные колеса приводились в движение комбинацией напора воды и гравитации в потоках, перепад в которых был 2–5 м. Хорошо сделанный желоб, предотвращавший преждевременный сброс воды, существенно повышал конечную эффективность. Конструкция с низко расположенным желобом, где вода выливалась ниже центра колеса, имела эффективность не выше, чем у хорошего нижнебойного колеса. Высоко расположенный желоб, где вода лилась на лопасти выше центра колеса, позволял достигнуть эффективности верхнебойных колес. Традиционные верх-небойные колеса, приводимые в движение в основном потенциальной гравитационной энергией, работали с перепадом воды более 3 м, и их диаметр обычно равнялся примерно трем четвертям перепада (рис. 4.10). Воду вели по желобам или трубам в подобные ведрам отделения со скоростью от менее 100 литров/секунду до более 1000 л/с, и колесо вращалось со скоростью 4-12 оборотов в минуту. Поскольку большая часть вращательной мощности генерировалась весом опускающейся воды, верх-небойные колеса можно было размещать на медленном течении (примечание 4.6).
Примечание 4.6. Мощность верхнебойных колес
Потенциальная энергия воды (в джоулях) равняется mgh, произведению ее массы (в кг), гравитационного ускорения (9,8 м/с2
) и перепада (высота в метрах). Следовательно, ведро верхнебойного колеса, содержащее 0,2 м3 воды (200 кг), поднятое на 3 м над точкой выливания, имеет потенциальную энергию примерно в 6 кДж. Приняв скорость течения за 400 кг/с, мы определим, что колесо может иметь теоретическую мощность около 12 кВт. Полезная механическая мощность такой машины может варьироваться от менее 4 кВт для тяжелого деревянного колеса до более 9 кВт для искусно изготовленного и тщательно смазанного металлического колеса XIX века.Это преимущество частично отменяло потребность в хорошо направленном и тщательно регулируемом потоке воды, а значит, не нужно было сооружать пруды и подводящие каналы. Верхнебойные колеса, работавшие с избыточной допустимой нагрузкой, то есть со сниженной потерей воды из ведер, могли быть более эффективными, хотя и менее мощными, чем машины под полным напором. До первых десятилетий XVIII века верхнебойные колеса считались менее эффективными, чем нижнебойные (Reynolds 1979). Ошибку раскрыли только в 1750-х годах благодаря работам Антуана Депарсье и Иоганна Альбрехта Эйлера, но в первую очередь – точным экспериментам с моделями мельниц Джона Смитона (1724–1792), который сравнивал мощность водяных мельниц с мощностью других первичных движителей (Smeaton 1759).
Его дальнейшая пропаганда более эффективных верхнебойных колес несколько замедлила распространение паровых двигателей, а эксперименты Смитона (с помощью которых он рассчитал, что мощность колеса пропорциональна кубу скорости течения) определили планку эффективности для верхнебойных колес в 52–76 % (среднее 66 %) по сравнению с 32 % для лучших нижнебойных (Smeaton 1759). Современный теоретический анализ эффективности водяных мельниц (Denny 2004) дал очень похожие результаты: 71 % для верхнебойных колес, 30 % для нижнебойных и около 50 % для устройств Понселе. Качественно сконструированное и находящееся в хорошем состоянии верхнебойное колесо XX века имело потенциал эффективности в 90 % и могло превратить до 85 % кинетической энергии в полезную работу (Muller and Kauppert 2004), но реально достижимый уровень составлял 60–70 %; лучшие немецкие цельнометаллические колеса, разработанные и изготовленные в 1930-х годах, достигали эффективности в 76 % (Muller 1939).