Имеются два порядка чисел: четные
и нечетные. Поскольку единое, или 1, всегда остается неделимым, нечетное число равным образом не может быть разделено поровну. Таким образом, 9 есть 4 + 1 + 4, и поскольку в середине стоит единица, число не может быть разделено поровну. Далее, если некоторое нечетное число разделить на две части, одна часть всегда будет четной, а другая нечетной. Таким образом, 9 может быть представлено как 5 + 4, 3 + 6, 7 + 2 или 8 + 1. Пифагорейцы рассматривали нечетное число, прототипом которого была монада, определенным и мужским. Они, правда, не пришли к согласию относительно природы единого, или 1. Некоторые считали его положительным, потому что если его добавить к четному (отрицательному) числу, получится нечетное (положительное) число. Другие утверждали, что если единицу добавить к нечетному числу, последнее станет четным и, таким образом, мужское превращается в женское. Единое, или 1, следовательно, рассматривается как андрогинное число, совмещающее как мужские, так и женские атрибуты; следовательно, оно четно и нечетно одновременно. По этой причине пифагорейцы назвали его четно-нечетным. В обычаях у пифагорейцев было приношение высшим богам нечетного числа предметов, в то время как богиням и подземным духам приносилось четное число.Любое четное число может быть разделено на две равные части, обе из которых либо четны, либо нечетны. Таким образом, 10 делится на равные части, 5 + 5, где обе части нечетны. Тот же принцип истинен, если 10 разделить на две неравные части. Например, в 6 + 4 обе части четны, в 7 + 3 обе части нечетны, в 8 + 2 обе части опять четны, и в 9 + 1 нечетны. Таким образом, в четном числе, как бы его ни делить, части всегда либо четны, либо нечетны. Пифагорейцы рассматривали четное число, прототипом которого была дуада, неопределенным и женским.
Нечетные числа делятся специальной математической процедурой, называемой Решетом Эратосфена,
на три общих класса: несоставные, составные и несоставные-составные.Несоставные
числа — это такие числа, которые не имеют других делителей, кроме себя самого и единицы, такие как 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 и так далее. Например, 7 делится только на 7, которое только один раз вмешается в него, и на единицу, которая вмещается в него семь раз.Составные
числа — это те, которые делимы не только сами на себя и на единицу, но также и на некоторые другие числа. Составными числами являются 9, 15, 21, 25, 27, 33, 39, 45, 51, 57 и так далее. Например, 21 делимо не только на себя и единицу, но также на 3 и 7.Несоставные-составные
числа — это числа, не имеющие общего делителя, хотя каждое из них делимо, такие как 9 и 25. Например, 9 делимо на 3 и 25 на 5, но ни одно из них не делимо на делитель другого. Таким образом, они не имеют общего делителя. Поскольку они имеют индивидуальные делители, они называются составными, а поскольку они не имеют общего делителя, они называются несоставными. Поэтому для описания этих свойств был придуман термин несоставные-составные.Четные числа делятся на три класса: четно-четные, четно-нечетные и нечетно-четные.
Четно-четные
числа представляют собой удвоения чисел, начиная с единицы. Таким образом, это 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 и 1024. Доказательство совершенства четно-четных чисел состоит в том, что они могут делиться пополам, еще раз пополам и так далее до получения единицы. Так, 1/2 от 64 = 32; 1/2 от 32 = 16; 1/2 от 16 = 8; 1/2 от 8 = 4; 1/2 от 4 = 2; 1/2 от 2 = 1; за пределы 1 идти невозможно.Четно-четные числа
обладают некоторыми уникальными свойствами. Сумма любого числа терминов, кроме последнего, всегда равна последнему термину минус единица. Например, сумма первого и второго терминов (1+2) равна третьему термину (4) минус 1. Или же сумма четырех терминов (1 + 2 + 4 + 8) равна пятому термину (16) минус один.Ряд четно-четных чисел
имеет и такое свойство: первый член, умноженный на последний, дает последний; второй, умноженный на второй от конца, дает последний и так далее пока в ряду с нечетным числом терминов не останется одно число, которое, будучи умножено само на себя, даст последнее число в ряду. Например, ряд 1, 2, 4, 8, 16 — ряд с нечетным числом терминов. Первый термин, 1, будучи умножен на последний, дает последний, 16. Второй термин, 2, будучи умножен на предпоследний, 8, дает последний, 16. Оставшийся в середине термин, будучи умножен сам на себя, даст последний термин, 16.