Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

Кроме этой первой гипотезы о том, что функция может быть точно оценена функцией Li(N) для бесконечных значений N, Гаусс вывел и вторую гипотезу, поскольку считал, что функция Li(N) в конце концов будет переоценивать реальное количество простых чисел (всегда на бесконечно малый процент) и что эта тенденция будет сохраняться. Это второе утверждение получило название второй гипотезы Гаусса. Доказать ее или опровергнуть было непростой задачей, поскольку в то время еще не было современных компьютеров, которые могли совершить необходимые вычисления. Подтвердить или опровергнуть гипотезы Гаусса можно с помощью строгого математического доказательства: нельзя ограничиться экспериментальным подтверждением, поскольку какой бы длинной ни была составленная таблица простых чисел, всегда будут сомнения в том, сохранится ли эта тенденция по мере продвижения ко все большим числам. Для математики возможности экспериментальной проверки на невообразимо больших числах недостаточно, и в этом ее отличие от других наук.

В проверке гипотез Гаусса заметную роль играл Бернхард Риман, которого можно назвать его лучшим учеником.


ГИПОТЕЗА РИМАНА

В 1809 году Вильгельм фон Гумбольдт (1767-1835) стал министром образования Пруссии и совершил революцию в образовательной системе. Изучение математики впервые получило большое значение в новых гимназиях и университетах, студентов воодушевляли изучать математику как таковую, а не только в качестве вспомогательной дисциплины на службе у других наук. Но эта тенденция весьма отличалась от французского подхода, в котором превалировало утилитарное знание. Одним из тех, кому удалось воспользоваться этим изменением, был Риман, на тот момент один из самых способных студентов-математиков в Германии. После окончания учебы в Люнебурге (государство Ганновер), следуя желанию своего отца-священнослужителя, он в 1846 году поступил в Гёттингенский университет, который славился преподаванием теологии. Так судьба свела Римана с уже пожилым Гауссом. Через некоторое время молодой студент убедил своего отца разрешить ему заменить изучение теологии на математику. Риман в течение двух лет учился в Берлинском университете, поскольку в Гёттингене, по его мнению, было мало интеллектуальных стимулов, помимо Гаусса. В Берлине он завязал общение с Дирихле, который предложил студенту первые задачи с простыми числами. Во время пребывания в Берлине Бернхарду удалось изучить записи Гаусса с гипотезами о простых числах.

Риман вернулся в Гёттинген в 1849 году, чтобы закончить докторскую диссертацию и отдать работу на оценку своему учителю, Гауссу. Он сделал это в 1854 году, за год до смерти наставника.

Когда Риман начал заниматься простыми числами, нужно было доказать еще две гипотезы Гаусса. Во-первых, что функция может быть точно выражена Li(N) для любого N, то есть что разница между ними является бесконечно малой, таким образом, ее предел стремится к нулю. И во-вторых, что Li(N) для любого значения . Чтобы взяться за проблему, Риман ввел знаменитую дзета-функцию, которая определяется следующим образом:

где z — комплексное число, отличное от 1. У этой функции есть значения, в которых она равна нулю, такие как z = -2, z = -4 и другие, известные под названием тривиальных нулей. Нетривиальные нули — это те, для которых действительная часть строго больше нуля, но строго меньше 1. Вспомним, что комплексное число всегда имеет вид а + bi где а и b — действительные числа. Итак, для нетривиальных нулей справедливо 0 а 1.

Риман своим определением всего лишь обобщил функцию, изученную Эйлером, который обозначил ее так же:

Разница между дзета-функцией Римана и функцией Эйлера состоит в области определения. Для Эйлера х имеет действительное значение, в то время как у Римана z — комплексное число. Следовательно, функция Эйлера принимает действительные значения, в то время как функция Римана принимает комплексные значения.

Интерес математиков к этой бесконечной сумме, известной как ряд, происходит из мира музыки, и этот ряд появился раньше исследований Эйлера, хотя именно он изучил его наиболее глубоко и нашел связь с простыми числами. Пифагор заметил, что звук, издаваемый сосудом с водой, зависит от количества содержащейся в нем жидкости. Оказалось, что звуки гармоничны, если количество воды является частью от целого, дробью с числителем 1, то есть 1, 1/2, 1/3, 1/4, ... Пифагор назвал этот ряд гармоническим. Сумма гармонического ряда равноценна тому, что в дзета-функции Эйлера х взяли равным 1. Можно доказать, что сумма этого ряда бесконечна. На первый взгляд это очевидный результат, поскольку если мы сложим бесконечное количество положительных чисел, сумма будет расти и в конце концов примет бесконечное значение. Но дело в том, что это не так: для х = 2 ряд расходится. Действительно, Эйлер доказал, что значение

В истории математики не всегда было ясно, будет ли сумма бесконечного числа положительных членов обязательно равна бесконечности, и даже появились философские теории, посвященные этому.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука
Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг