Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

Хотя Гаусс не публиковал работ по неевклидовой геометрии, это не означает, что он вообще не занимался геометрическими проблемами. В 1827 году ученый представил фундаментальную работу о дифференциальной геометрии, использовавшую элементы математического анализа. Книга, озаглавленная Disquisitiones generales circa superficies curvas («Общие исследования о кривых поверхностях»), представляет собой вклад Гаусса в дифференциальную геометрию. В этой работе ученый создал дифференциальную геометрию поверхностей, которая в последующие десятилетия была дополнена работами многих математиков. Основная проблема здесь — это отражение на плоской карте геометрии других типов поверхностей. В самых простых случаях (при постоянной кривизне) появляются гомогенные геометрии: евклидова, эллиптическая и гиперболическая (именно ее разработали Бойяи и Лобачевский). Гаусс пошел намного дальше этих гомогенных пространств и ввел то, что сегодня называется кривизной Гаусса, — обобщение для поверхностей определенной кривизны на плоскости.

Это позволило ему сформулировать так называемую Theorema Egregium (выдающуюся теорему), главный результат дифференциальной геометрии. Говоря неформально, в теореме утверждается, что гауссова кривизна дифференцируемой поверхности может быть полностью определена посредством измерения углов и расстояний на самой поверхности, не ориентируясь на конкретную форму, которую она принимает в трехмерном евклидовом пространстве. Из этого следует, что понятие кривизны — это локальное свойство.


КРИВИЗНА ГАУССА

В геометрии кривая (в параметрическом виде) определяется на плоскости как отображение a (s) = (x(s),y (s)), где s — действительное число, а функции x(s) и y(s) дают координаты на плоскости. Параметрическими называются такие уравнения, в которых переменные х и у, каждая по отдельности, выражены через третью переменную, или параметр (в нашем случае s). Кривая должна быть непрерывной и дифференцируемой функцией, то есть плавной линией без углов. Так как она дифференцируемая, то в каждой точке s кривой можно определить касательную к ней. По определению кривизна а в s определяется как угол, образуемый касательной к кривой в точке s, t(s), с фиксированным направлением на плоскости, которое для удобства принимается за ось ОХ координат, то есть:

(s) = угол, образованный между t(s), ось ОХ.

Так что обычная кривизна k(s) кривой определяется как дифференциал функции , то есть:

k(s) = '(s).

На самом деле k{s) измеряет удаленность кривой от касательной прямой. Кривизна Гаусса, которая в некотором роде обобщает это понятие для поверхностей, может быть определена различными способами, самый простой из них задан выражением:

К=k · k2,

где k1 и k2

— это главные кривизны в каждой точке пространства.


Изометрия — это математическое преобразование двух пространств, которое оставляет инвариантными расстояния между точками. Пример изометрии в евклидовом пространстве из трех измерений — это вращения. Итак, следствие из Theorema Egregium в том, что у двух поверхностей существуют изометрии, только если у них одинаковая гауссова кривизна. Очень показателен следующий пример: сфера с радиусом R имеет постоянную гауссову кривизну, равную R-2, в то время как плоскость имеет нулевую кривизну. Как следствие Theorema Egregium, лист бумаги невозможно согнуть или повернуть так, чтобы получилась часть сферы, не сминая или не надрезая его. И наоборот, поверхность сферы не может быть представлена как плоскость без искажения расстояний.

У этого факта есть важный вывод для картографии: нельзя построить карту Земли, на которой масштаб был бы одинаковым в каждой точке плоскости. Следовательно, все обычно используемые проекции изменяют масштаб в различных точках и дают некоторое искажение. Идеальной карты Земли не существует и не может существовать.

Перейти на страницу:

Похожие книги

Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука
Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг