Таким образом, яды кожи лягушки — вещества, сходные с уже известными гормонами, а во многих случаях идентичные им. Подобное заключение сделано в отношении других ядов. В частности, недавно обнаружены два пептида. Один из них — саувагин, изолированный из кожи лягушки, с физиологическими эффектами на сердечно-сосудистую систему и переднюю долю гипофиза теплокровных, другой — дерморфин — вещество с мощными опиатными эффектами, в том числе аналгезийными.
Важно, что все обнаруженные кожные пептиды амфибий имеют функциональные аналоги с гормонами энтеронейрональной оси млекопитающих. Так, функциональные эффекты церулеица сходны с таковыми холецистокинина и гастрина, эффекты тахикинина — с субстанцией Р и т.д. В кишке и мозгу выявлена бомбезинподобная иммунореактивность (табл. 17). Еще более поразительно, что структура пептидов кожи амфибий близка, а в некоторых фрагментах идентична структуре гормонов человека и высших животных. Подобные совпадения не случайны и отражают единство происхождения пептидов. Это означает, что гипотеза происхождения ядов в результате генетических экспрессий сформировавшегося физиологически активного вещества в других органах получает подтверждения.
Семейство пептидов Кожи лягушки в аналогов пептидов в кишке в мозгу млекопитающих
| Кожа | Кишка | Мозг |
| Тахикинины | Субстанция Р | Субстанция Р |
| (эледозин, физалемин) | Физалеминподобные пептиды | Физалеминподобные пептиды |
| Церулеин | Xолецистокинин/гастрины | Xолецистокинин-8 |
| Брадикинины | ? | Брадикининподоб-ная иммунореактивность |
| Боыбезины | Бомбезинподобные пептиды | Бомбезинподобные пептиды |
| Ксенопсин | Нейротензин | Нейротензпн |
| Ангиотензин | Ангиотензины | Ангиотензины |
| Гормон, освобождающий тиреотропин | Гормон, освобождающий тиреотропин | Гормон, освобождающий тиреотропин |
| ВИП | ВИП | ВИП |
| Саувагин | ? | ? |
| Дерморфин | Опиоидные пептиды | Опиоидные пептиды |
Итак, в состав ядов змей, насекомых, амфибий и многих других организмов входят известные ферменты и физиологически активные вещества, выполняющие регуляторные или функциональные нагрузки. В этом случае одни и те же сигналы, переходя из одной системы в другую, участвуют в реализации не только
разных, но подчас совершенно экзотических функций. Это же справедливо для перемещения одних и тех же гормонов из желудочно-кишечного тракта в мозг, железы внутренней секреции и т.д. При новой локализации гормон может выполнять роль нейротрансмиттера, а нейротрансмиттер — гормона.
Функционально неполяризованные и неспециализированные клетки характеризуются равномерным распределением каналов и насосов, благодаря чему создается наиболее равномерный и экономичный поток веществ из клетки в клетку. Однако в специализированных клетках, реализующих всасывание, наблюдается поляризация и распределение каналов и насосов так, что первые обращены в полость, из которой происходит всасывание, а вторые взаимодействуют с внутренней средой. По мнению многих исследователей, этого достаточно для обеспечения однонаправленного потока воды, натрия, нутриентов и т.д. В секреторных клетках насосы и каналы сосредоточены в области базолатеральной мембраны, которая осуществляет нутритивные функции.
Можно представить, что разные типы функциональной сцециализации в ходе эволюции или индивидуального развития связаны с транспозицией каналов в пределах клетки. Существуют данные о возможности перемещения блоков, характерных для одного типа внутриклеточных органелл, в другие органеллы. Например, Са2+
, Мg2+-АТФаза — типичный насос эндоплазматической сети — может быть обнаружена в клеточной мембране. При сохранении функциональной топографии клетки, например кишечной, достаточно включения механизмов секреции Сl- на апикальной мембране, чтобы превратить механизм, обеспечивающий всасывание воды и солей, в механизм их выделения. Изменение направления потоков воды и солей, которое, в частности, наблюдается при диарее различной этиологии, имеет место также в органах, реализующих удаление избытка солей, а именно в солевых железах и жабрах.