В 1960-х годах немецкий радиоастроном Себастьян фон Хорнер, опубликовавший множество работ по проблеме поиска внеземного разума, отстаивал использование музыки как средства межзвездной коммуникации. Инопланетная музыка, считал он, с очень высокой вероятностью может напоминать земную. В многоголосной музыке (когда одновременно звучат две ноты или более), где бы она ни зародилась, есть лишь ограниченное количество способов заставить голоса звучать гармонично. Модуляции – переходы из одной тональности в другую – возможны только при условии, что октава разделена на равные части и соответствующие тона имеют частоты, находящиеся в определенном математическом соотношении. Западная музыка пришла к компромиссу в виде двенадцатиступенного равномерно темперированного строя. Тот же строй, предполагал фон Хорнер, может появиться и в музыке иных цивилизаций, как и еще пара неплохих компромиссных звукорядов: пятиступенный и тридцатиодноступенный. О последнем в XVII веке много писали ученые, в том числе астроном Христиан Гюйгенс: по их мнению, такой строй оптимален для существ, обладающих более чувствительной, чем наша, слуховой системой. Тем же из обитателей далеких планет, кого природа не наделила хорошей способностью различать близкие по высоте звуки, лучше подойдет пятиступенный равномерно темперированный строй.
Часто считают, что первое послание, которое мы получим из других миров, будет научным или математическим. Но разве можно себе представить приветствие лучше, чем хорошая музыка – не только имеющая логическую основу, но и наполненная чувствами и эмоциями ее создателей?..
Глава 7. Тайны простых чисел
Математики уже давно тщетно пытаются найти какую-то закономерность в последовательности простых чисел, и у нас есть основания полагать, что эту тайну человеческий разум не сумеет разгадать никогда.
Возможно, самая важная на сегодня задача для математиков – это гипотеза Римана.
Простое число – это всего лишь натуральное число, которое делится без остатка только на само себя и на единицу. Казалось бы, ничего особенного в таком свойстве нет, и тем не менее простые числа в математике – на особом положении. Не будет преувеличением сказать, что простые числа связаны с некоторыми из величайших неразгаданных тайн в этой науке и играют важную роль в нашей повседневной жизни. Например, каждый раз, когда вы пользуетесь кредитной карточкой, компьютеру банка нужно удостовериться, что вы ее владелец. Делает он это с помощью алгоритма, который превращает очень большое число в однозначно определяемое произведение двух заранее известных простых множителей. От решения таких странных задачек во многом зависит наша финансовая безопасность.
Первые несколько простых чисел – это 2, 3, 5, 7, 11, 13, 17, 19, 23 и 29. Все числа, не относящиеся к простым, называют составными. Само число 1 простым не считается (а могло бы), поскольку иначе возникли бы сложности с рядом полезных теорем, в том числе с той, которая настолько важна, что ее величают “основной теоремой арифметики”. Она гласит, что любое число можно представить в виде произведения простых чисел единственным способом (если не учитывать порядок следования множителей). Например, 10 = 2 × 5, а 12 = 2 × 2 × 3. Если бы единица считалась простым числом, то таких способов было бы бесконечное множество – ведь можно сколько угодно раз последовательно умножать число на единицу, результат от этого не изменится.