Читаем Евангелие от LUCA. В поисках родословной животного мира полностью

Изучением симметрии многоклеточных занимались многие великие биологи, начиная от Жоржа Кювье и Эрнста Геккеля. Уже в XIX в. удалось создать довольно полную классификацию типов симметрии у животных. В основе ее лежат такие важные понятия, как плоскость симметрии и ось симметрии. Плоскость симметрии — это воображаемая линия, которая делит тело животного (или любой иной изучаемый объект) на две равные и зеркально подобные половины (представьте лист березы или черепаший панцирь). Если в данном теле две и больше плоскости симметрии, пересекающиеся вдоль одной прямой, то эта прямая становится осью симметрии

, вокруг которой и происходит воображаемое (или вполне реальное) вращение объекта. Если повернуть тело вокруг этой оси на определенный угол, оно обязательно совпадет само с собой.

Рассмотрим два крайних состояния, известных в живой природе. На одном полюсе находятся абсолютно бесформенные организмы типа амебы или трихоплакса. У них нет ни плоскости симметрии, ни оси симметрии. Они не только совершенно асимметричны, но и не имеют постоянной формы тела (рис. 7.2). Только посмотрите, как амеба медленно ползет по плоской поверхности, выпячивая и снова втягивая свои ложноножки[134]. Недаром же Линней нарек амебу «протеем» в честь древнегреческого морского божества, способного превращаться во что угодно.

Противоположная крайность — шаровидная колония вольвокса или другого протиста (или морской еж). Через нее можно провести бесконечное множество осей и плоскостей симметрии, причем оси неизбежно пересекутся в центральной точке шара. Свойства такой колонии одинаковы почти во всех ее участках, в ней невозможно выделить ни переднего, ни заднего конца, все направления равнозначны. Как и асимметричных амеб, такие колонии в морфологическом отношении принято считать очень примитивными.

Среди многоклеточных животных такие крайности встречаются довольно редко. Гораздо чаще можно найти существ, тело которых построено по принципу радиальной симметрии

. В этом случае вдоль оси пересекаются несколько плоскостей симметрии, например четыре, как у некоторых медуз. Загляните под зонтик медузы аурелии, туда, где находится ротовое отверстие, и вы увидите четыре щупальца, бегущих по радиусам от центральной точки, причем соседние радиусы практически перпендикулярны друг другу (см. рис. 7.2). Само собой, количество радиусов не обязательно должно быть равно четырем, встречаются животные с 6-, 8-, 10-, 24-лучевой симметрией и так далее; для многих иглокожих характерна пятилучевая симметрия.

Нам, людям, гораздо более близка и понятна билатеральная (двусторонняя) симметрия, свойственная вообще подавляющему большинству метазоев. Для билатеральных существ характерно наличие одной-единственной плоскости симметрии, которая делит их тело на левую и правую половины, зеркальные по отношению друг к другу (рис. 7.2, средний ряд).


* Все рисунки, кроме изображения человека, взяты из старых книг по зоологии, опубликованных еще в XIX в. Обратите внимание на рисунок медузы. Его выполнил сам Эрнст Геккель, который не только внес большой вклад в изучение этих животных, но и оставил целую серию прекрасных изображений медуз и других кишечнополостных.


Таковы основные идеальные

типы симметрии, представленные в животном мире. Строение реальных организмов может довольно сильно от них отклоняться. Например, у человека двусторонняя симметрия хорошо выражена во внешнем строении тела, но заметно нарушена, если заглянуть внутрь него. Наряду с парными, симметрично расположенными органами (полушария головного мозга, легкие, почки) у нас есть органы непарные, например такие важнейшие, как сердце и печень.

У некоторых животных встречаются комбинированные формы симметрии. Мягкое тело улитки внешне вполне билатерально симметрично, но ее наружный скелет, раковина, построен совсем по другому принципу (см. рис. 7.2). Симметрию спиральнозавитой раковины описывают как винтовую. Асимметрично строение человеческой ладони: левая и правая ее стороны не являются зеркальным подобием друг друга.

Кроме того, тип симметрии у одного и того же организма может изменяться в течение жизни. Личинки иглокожих, той же морской звезды, — это вполне билатеральные и активно плавающие организмы. После того как они осядут на дно и перейдут к сравнительно малоподвижному существованию, тип симметрии у них «переключится» на радиальный.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Математика космоса. Как современная наука расшифровывает Вселенную
Математика космоса. Как современная наука расшифровывает Вселенную

Как математические модели объясняют космос? Иэн Стюарт, лауреат нескольких премий за популяризацию науки, представляет захватывающее руководство по механике космоса в пределах от нашей Солнечной системы и до всей Вселенной. Он описывает архитектуру пространства и времени, темную материю и темную энергию, рассказывает, как сформировались галактики и почему взрываются звезды, как все началось и чем все это может закончиться. Он обсуждает параллельные вселенные, проблему тонкой настройки космоса, которая позволяет жить в нем, какие формы может принимать внеземная жизнь и с какой вероятностью наша земная может быть сметена ударом астероида.«Математика космоса» — это волнующий и захватывающий математический квест на деталях внутреннего мира астрономии и космологии.Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория».

Йэн Стюарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература