В поисках генов видообразования
Итак, постзиготическая изоляция возникает в результате фиксации несовместимых (конфликтующих) аллелей в разобщенных популяциях. Что же это за гены, изменения которых порождают такие конфликты? В принципе при скрещивании представителей двух давно разошедшихся популяций конфликтовать может что угодно с чем угодно. Но все-таки интересно было бы найти конкретные гены, ответственные за несовместимость. Для таких генов придумано броское название — «гены видообразования
». Ясно, что в разных парах видов конфликтующие гены, скорее всего, будут разными. Несмотря на их несомненное присутствие у разошедшихся видов, идентифицировать их пока удается нечасто. Мы расскажем о нескольких таких удачных примерах.Несколько генов видообразования нашли у дрозофил (Orr et al., 2004
). Как правило, это гены, так или иначе связанные с размножением. Например, один из них, OdsH, вызывает гибридную стерильность (бесплодие) у самцов, полученных от скрещивания Drosophila simulans и D. mauritiana — видов, разделившихся 0,3–1,0 млн лет назад. Функция гена состоит в регуляции экспрессии ряда других генов, участвующих в сперматогенезе. Многие гены видообразования несут следы действия положительного отбора. По-видимому, это значит, что постзиготическая несовместимость часто развивается под действием разнонаправленного отбора (как в эксперименте с дрожжами), а не просто за счет пассивного накопления нейтральных различий.Что касается млекопитающих, то у них пока описан только один такой ген — Prdm9
, ответственный за стерильность мужского потомства при скрещивании двух видов (или подвидов, случай спорный) домовых мышей: Mus musculus и Mus domesticus. То, что где-то на 17-й мышиной хромосоме есть «ген гибридной стерильности», конфликтующий с несколькими другими генами при межвидовых скрещиваниях, было известно давно, но установить его идентичность удалось лишь в 2008 году. С тех пор ген Prdm9 активно изучают. При этом выяснилось много интригующих фактов. В частности, обнаружилась связь Prdm9 со стерильностью не только у гибридных мышей, но и у других животных. Например, у людей мутации этого гена приводят к мужскому бесплодию.Функцию Prdm9
установили лишь в 2012 году. Оказалось, что ген отвечает за формирование «горячих точек рекомбинации» — мест, где хромосомы чаще всего рвутся, чтобы обменяться участками во время мейоза. В норме у мышей разрывы хромосом при подготовке к кроссинговеру происходят в нефункциональных частях генома, но, если работа Prdm9 нарушена, хромосомы начинают рваться где попало, в том числе в регуляторных областях жизненно важных генов. Мыши с такими генетическими дефектами бесплодны, потому что у них не образуются жизнеспособные половые клетки (Brick et al., 2012).У растений выявлено около 40 генов видообразования. Как правило, это тоже гены, связанные с размножением — с созреванием пыльцы, ускорением или отсрочкой цветения, механизмами «узнавания» подходящей пыльцы тканями пестика (к этим механизмам относится и самонесовместимость, о которой мы говорили в главе 3). У растений признаки действия положительного отбора на гены видообразования тоже есть, но не такие четкие, как у дрозофил. Возможно, случайные процессы играют в видообразовании у растений более важную роль (Rieseberg, Blackman, 2010
).Один из интересных случаев связан с домашним рисом (см. главу 2). Согласно данным археологии и генетики, азиатский культурный рис Oryza sativa
был одомашнен на юге Китая 9 тыс. лет назад (Molina et al., 2011). С тех пор было выведено много сортов, подразделяющихся на две большие группы: O. s. indica (длиннозерные сорта) и O. s. japonica (круглозерные).«Индийские» и «японские» сорта разделились не менее 3–4 тыс. лет назад и с тех пор эволюционировали аллопатрически, т. е. выращивались в разных районах, почти не скрещиваясь друг с другом. За это время в их генофондах успели накопиться взаимно несовместимые мутации, что привело к частичной репродуктивной изоляции, а именно к снижению плодовитости гибридов indica
и japonica. Это можно рассматривать как наметившееся разделение азиатского культурного риса на два вида.