Еще один фактор, затрудняющий определение границ зоны умеренных температур, — это сама звезда. Светимость звезды меняется на протяжении ее жизни, и значит, в разные периоды существования звезды окружающая ее планетная система получает разное количество тепла. По мере превращения водорода в гелий, а затем и в более тяжелые элементы ядро звезды сжимается. Сжатие сопровождается выделением энергии, что приводит к усилению светимости звезды. Около 3–4 млрд лет назад наше Солнце было на 30% менее ярким, чем сейчас. Если бы количество получаемой Землей солнечной энергии уменьшилось на такую величину, температура на поверхности нашей планеты была бы ниже на 20 °C, чем сейчас. То есть большая часть Земли была бы заморожена. Но, как это ни странно, геологические данные показывают, что 4 млрд лет назад на поверхности Земле было более чем достаточно воды в жидкой фазе. От той эпохи до нас дошли осадочные породы, которые были сформированы в результате оседания в жидкости твердых частиц. Это называют
Убедительного объяснения ему до сих пор не нашли. Согласно одной гипотезе, миллиарды лет назад атмосфера нашей планеты была совершенно другой — в ней было больше парниковых газов, способных удерживать тепло. В результате круговорота углерода уровень углекислого газа в атмосфере мог подняться до 80% от ее массы. По другой гипотезе, в результате жизнедеятельности ранних бактериальных форм жизни в атмосфере могло резко увеличиться содержание метана.
При определении зоны умеренных температур учитывается влияние излучения звезды на температуру на поверхности планеты земного типа. Однако звезды не единственный источник тепла.
Одновременно с тем, что можно называть собственно теплом, Солнце испускает непрерывный поток заряженных частиц, называемый
Если вы отправитесь в Гренландию на севере или в Новую Зеландию на юге, при определенном везении вы сможете наблюдать северное или южное полярное сияние. Когда испускаемый Солнцем поток заряженных частиц достигает Земли, магнитное поле нашей планеты перехватывает его и перенаправляет к полюсам. При взаимодействии частиц с атомами кислорода и азота в верхних слоях атмосферы Земли они испускают зеленый и синий свет, который и создает полярное сияние.
Не будь у Земли магнитного поля, солнечные частицы беспрепятственно бы достигали ее поверхности. Чтобы понять, что ни к чему хорошему это бы не привело, достаточно взглянуть на наших ближайших соседей. Магнитного поля нет ни у Венеры, ни у Марса. Несмотря на то что по своему строению они очень похожи на Землю, из-за небольших отличий в процессе формирования они лишились своих защитных магнитных полей.
Магнитное поле нашей планеты создается расплавленным железным внешним ядром, которое остается горячим благодаря радиоактивным элементам и остаточному теплу, выделявшемуся при столкновениях в процессе формирования Земли. При движении этого электропроводящего металла появляется ток, который создает магнитное поле, превращая планету в гигантский стержневой магнит. Движение расплавленного ядра обусловлено вращением нашей планеты и потоками тепла, циркулирующими между ядром и поверхностью. Вторые возникают в результате тектонической активности плит Земли. При перемещении гигантских плит коры горячая мантия обнажается и плавит старую кору. При этом высвобождается энергия, которая заставляет охлаждаться внешний слой. Из-за разницы температур ядра и поверхности возникают мощные конвекционные потоки, циркуляция которых напоминает циркуляцию тепла в гигантской батарее отопления: теплая жидкость поднимается вверх, а более холодная опускается вниз, где снова нагревается. Это постоянное движение в недрах Земли придает импульс расплавленному ядру и нашему магнитному полю.
Алексей Игоревич Павловский , Марина Артуровна Вишневецкая , Марк Иехиельевич Фрейдкин , Мишель Монтень , Солоинк Логик
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Философия / Самиздат, сетевая литература / Современная проза / Учебная и научная литература