Должно быть, это один из самых странных объектов во Вселенной: алмазная планета, обращающаяся вокруг компаньона размером с город, которая когда-то была звездой.
Глава 9. Системы с двумя солнцами
Попытки доказать с помощью телескопа, что наша Солнечная система не уникальна во Вселенной, предпринимались еще за 10 лет до открытия первой экзопланеты. Правда, мало кто воспринимал их всерьез. Скептическое отношение было вызвано не сомнениями ученых в существовании планет вокруг других звезд, а неверием в возможность их обнаружения при тогдашнем уровне развития технологий.
До того момента охота на планеты сводилась к астрометрии — поиску мельчайших изменений в местоположении звезд на небе, которые бы указывали на наличие рядом планеты. Проблема заключалась в том, что даже под влиянием Юпитера, обращающегося вокруг Солнца, при наблюдении с расстояния 16 световых лет угловое отклонение нашей звезды составляет всего лишь 0,0000003 градуса. А это в 1000 раз меньше разрешения фотографических изображений неба, которые в то время можно было получить с Земли.
Пожалуй, самой убедительной попыткой открытия экзопланет стало известие об обнаружении двух объектов с массой Юпитера, обращающихся вокруг звезды Барнарда — красного карлика, находящегося на расстоянии 6 световых лет от нас в созвездии Змееносец. При сравнении местоположения звезды на фотопластинках в 1960-е гг. было выявлено смещение в 1 микрометр. Однако впоследствии выяснилось, что время, когда оно фиксировалось, совпадало со временем чистки линз телескопа, а значит, перемещение звезды тут было ни при чем. Эта ошибка еще раз продемонстрировала всю тщетность подобных изысканий.
Анализ изменений лучевой скорости звезды казался столь же бесперспективным занятием. Допуская, что для достижения максимального эффекта наблюдение ведется «с ребра», кеплеровская скорость Солнца, возникающая под действием притяжения Юпитера с его 12-летним периодом обращения, составляет около 13 м/с. В 1970-е гг. лучевую скорость звезды можно было измерить только с точностью 1 км/с — при таком уровне точности невозможно выявить даже признаки планет размером с Юпитер. Да и горячий юпитер (объект, о котором тогда никто даже и не мог помыслить) остался бы незамеченным.
В конце 1970-х гг. благодаря работам Гордона Уолкера и его ученика постдока[20]
Брюса Кэмпбелла был совершен прорыв в области измерения лучевых скоростей. Они предложили поместить между излучаемым звездой светом и детектором телескопа контейнер с известным газом. Подобно атмосфере звезды, атомы газа поглощают свет в определенных интервалах длин волн. Таким образом, мы получаем уникальный отпечаток звезды из перекрывающих ее свет темных полос. Когда свет от звезды смещается к красному или синему концу спектра в результате воздействия обращающейся вокруг нее планеты, газовый отпечаток выступает в качестве опорной точки — своего рода нулевой отметки на линейке, относительно которой можно измерить это отклонение. Большим преимуществом было то, что и контрольная точка, и свет звезды могли фиксироваться одновременно. Это позволяло избежать тех больших погрешностей, которые прежде возникали из-за невозможности обеспечить полную неподвижность аппарата между замерами.Сначала в качестве контрольного газа Уолкер и Кэмпбелл решили выбрать фтороводород, так как он имеет взаимно разнесенные длины волн поглощения, которые могут быть четко выделены. У фтороводорода есть ряд недостатков, например высокая токсичность и коррозийность. Кроме того, после каждого сеанса наблюдения газовый контейнер приходилось перезаряжать. Описывая новый инструмент в 2008 г., Уолкер заметил, что «по правде говоря, работать с ним было просто небезопасно».
Но как бы опасен он ни был, новый инструмент обеспечил нужный результат. Предложенная конструкция позволила повысить точность измерения лучевой скорости звезд в сто раз — почти до 10 м/с. И хотя впоследствии исследователи все-таки заменили опасный фтороводород газовым контейнером с йодом, достигнутой благодаря ему точности было достаточно для обнаружения внесолнечных планет в течение десятилетия до первого сообщения о планете рядом с пульсаром. Получилось это не сразу, но к цели своей ученые подобрались близко.
Алексей Игоревич Павловский , Марина Артуровна Вишневецкая , Марк Иехиельевич Фрейдкин , Мишель Монтень , Солоинк Логик
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Философия / Самиздат, сетевая литература / Современная проза / Учебная и научная литература