Читаем Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты полностью

Это означает, что мы должны найти такую кривую, для которой сумма рас­стояний ХХ'-\-Х'Р' будет постоянна, независимо от выбора точки X. Легче всего это сделать, продолжив отрезок XX' до плоскости LL'. Потребуем теперь, чтобы выполнялись соот­ношения А'А"=А'Р',В'В"=В'Р', С'С"=С'Р' и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин А 'А+А 'Р' =АА'+А 'А'' будет постоянной для всех точек кривой. Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой;

вот зеркало телескопа и было изготовлено именно в форме параболы.

Приведенные примеры в общих чертах иллюстрируют прин­цип устройства оптических систем. Точные кривые можно рас­считать, используя правило равенства времен на всех путях, ведущих в точку фокуса, и требуя, чтобы время прохождения на всех соседних путях было большим.

В следующей главе мы еще вернемся к фокусирующим опти­ческим системам, а теперь обсудим дальнейшее развитие теории. Когда предлагается новый физический принцип, такой, как принцип наименьшего времени, то нашей первой естественной реакцией могли бы быть слова: «Все это очень хорошо, восхити­тельно, но вопрос заключается в том, улучшает ли это вообще наше понимание физики?». На это можно ответить: «Да. Посмот­рите сколько новых фактов мы теперь поняли!» А кто-то возра­зит: «Ну, в зеркалах я и так разбираюсь. Мне нужна такая кри­вая, чтобы каждая касательная к ней плоскость образовывала равные углы с двумя лучами света. Я могу рассчитать и линзу, потому что каждый падающий на нее луч отклоняется на угол, даваемый законом Снелла». Здесь очевидным образом содержа­ние принципа наименьшего действия совпадает с законом равен­ства углов при отражении и пропорциональности синусов углов при преломлении. Тогда, может быть, это философский вопрос, а может быть, вопрос просто в том, какой путь красивее? Можно привести аргументы в пользу обеих точек зрения.

Однако критерий важности всякого принципа состоит в том, что он предсказывает нечто новое.

Легко показать, что принцип Ферма предсказывает ряд но­вых фактов. Прежде всего предположим, что имеются три среды — стекло, вода и воздух и мы наблюдаем явление прелом­ления и измеряем показатель nдля перехода из одной среды в другую.


Фиг. 26.12. Параболическое зеркало.

Обозначим через n12 показатель преломления для пе­рехода из воздуха (1) в воду (2), а через n13— для перехода из воздуха (1) в стекло (3). Измерив преломление в системе вода— стекло, найдем еще один показатель преломления и назовем его п23 .Здесь заранее нет оснований считать, что n12 , n13 и n23 связаны между собой. Если же исходить из принципа наимень­шего времени, то такую связь можно установить. Показатель n12

есть отношение двух величин—скорости света в воздухе к скорости света в воде; показатель n13 есть отношение скорости в воздухе к скорости в стекле, а n23 есть отношение скорости в воде к скорости в стекле. Поэтому, сокращая скорость света в воздухе, получаем

(26.5)

Другими словами, мы предсказываем, что показатель преломле­ния для перехода из одного материала в другой можно получить из показателей преломления каждого материала по отношению к некоторой среде, скажем воздуху или вакууму. Таким обра­зом, измерив скорость света во всех средах, мы образуем одно число для каждой среды — показатель преломления для пере­хода из вакуума в среду — и называем его ni(например, ni

для воздуха есть отношение скорости в воздухе к скорости в вакууме и т. д.), после чего легко написать нужную формулу. Показатель преломления для любых двух материалов i и j равен

(26.6)

Используя только закон Снелла, подобное соотношение пред­сказать невозможно. Но связь эта существует. Соотношение (26.5) известно давно и послужило сильным аргументом в поль­зу принципа наименьшего времени.

Еще одно предсказание принципа наименьшего времени со­стоит в том, что скорость света в воде при измерении должна оказаться меньше скорости света в воздухе. Это уже предсказа­ние совсем другого рода. Оно гораздо глубже, потому что носит теоретический характер и никак не связано с наблюдениями, из которых Ферма вывел принцип наименьшего времени (до сих пор мы имели дело только с углами). Как оказалось, скорость света в воде действительно меньше скорости в воздухе, и ровно настолько, чтобы получился правильный показатель преломле­ния.

§ 5, Более точная формулировка принципа Ферма

До сих пор мы фактически пользовались неправильной фор­мулировкой принципа наименьшего времени. Здесь мы сформу­лируем его более точно. Мы неправильно называли его принци­пом наименьшего времени и для удобства по ходу дела применя­ли неправильную его трактовку. Но теперь мы выясним точное содержание принципа. Пусть имеется зеркало. Мы его показали на

Перейти на страницу:

Похожие книги

Новая Элоиза, или Письма двух любовников
Новая Элоиза, или Письма двух любовников

«Новая Элоиза, или Письма двух любовников» – самый известный роман французского мыслителя и прозаика Жан-Жака Руссо (франц. Jean-Jacque Rousseau, 1712-1778). *** Это сентиментальная история в письмах о любви прекрасной Юлии д'Этанж к своему учителю Сен-Пре. Мировую известность автору принесли произведения «Рассуждение о начале и основании неравенства между людьми, Сочиненное г. Ж. Ж. Руссо», «Руссовы письма о ботанике», «Семь писем к разным лицам о воспитании», «Философические уединенные прогулки Жан Жака Руссо, или Последняя его исповедь, писанная им самим», «Человек, будь человечен», «Общественный договор», пьеса «Пигмалион» и стихотворение «Fortune, de qui la main couronne». Жан-Жак Руссо прославился как выдающийся деятель эпохи Просвещения и человек широкого кругозора. Его сочинения по философии, ботанике и музыке глубоко ценятся современниками во Франции и во всем мире.

Жан-Жак Руссо

Проза / Классическая проза / Классическая проза XVII-XVIII веков / Прочая старинная литература / Древние книги