Вероятностные аргументы могут быть использованы как тест для теории и могут быть применены следующим образом. Предположим, что на априорной основе мы хотим приписать очень, очень низкие шансы той гипотезе, что вселенная не должна описываться как тщательно подобранная флуктуация от полного хаоса, характеризующего термодинамическое равновесие; например, предположим, что
Теперь мы начинаем делать наблюдения мира вокруг нас и мы наблюдаем состояния с описываемым порядком. Каждый из нас этим утром видел, что земля была внизу, а воздух был вверху, но одного такого наблюдения достаточно, чтобы увеличить шансы для упорядоченных состояний в
Если делается наблюдение угла вселенной, причём наблюдение макроскопическое, то можно обнаружить, что это состояние весьма далеко от равновесия. Шансы на то, что это может быть флуктуация, экстремально малы; требуется только одиночное наблюдение макроскопического порядка, чтобы уменьшить вероятность до 10^2, для которой только 5000 молекул должны быть упорядочены. Таким образом, совершенно очевидно, что только специальные состояния могли бы порождать огромную степень упорядочения, которую мы видим в мире.
Как тогда работает термодинамика, если её постулаты вводят в заблуждение? Фокус состоит в том, что мы всегда упорядочиваем объекты таким образом, что мы не делаем эксперименты над объектами, когда мы их находим, а только после того, как мы выбрасываем все те ситуации, которые могли бы привести к нежелательным упорядочениям. Если мы должны проводить эксперименты над газами, которые первоначально помещены в металлический кан, мы должны заботиться о том, чтобы ”дождаться того момента, когда термодинамическое равновесие установится” (как часто мы слышали
Более удовлетворительный способ представления постулатов статистической механики может быть следующим. Предположим, что мы действительно знаем все детали (классической) системы, такие как масса газа, с бесконечной точностью; это означает, что мы знаем положения и скорости всех частиц в некоторый момент времени t=0. Тогда мы можем (игнорируя действительные трудности в практике) вычислять точно, если мы знаем законы природы в точности, и узнать поведение и состояние всех других частиц в любой момент времени в будущем. Но сейчас предположим, что имеется некоторая небольшая неопределённость в наших измерениях или в нашем знании какого-либо одного фактора, который включён в вычисление, положение, скорости любой выделенной частицы или в небольшой неопределённости в точность, с которой мы знаем взаимодействие частиц. Не имеет значения (за исключением контрпримеров, построенных математиками), с чем связана эта неопределённость. Если такая неопределённость существует, мы должны будем описать финальное состояние усреднением этой неопределённости, и если прошло достаточно большое время, которое будет короче, чем наиболее длинное время неопределённости и наиболее длинное время системы, предсказания измерений будут очень близки к тем, которые даются канонической теорией термодинамического равновесия.