Читаем Фейнмановские лекции по гравитации полностью

согласуется с уравнением движения вещества. Здесь T есть тензор энергии-импульса вещества. В лекции 3 Фейнман находит квадратичное выражение для F, которое удовлетворяет согласованному линейному полевому уравнению до тех пор, пока сохраняется тензор энергии-импульса вещества (для случая специальной теории относительности) T,. Беспокойство возникает тогда, когда поле h

взаимодействует с веществом так, что вещество действует как источник h, уравнение движения вещества модифицируется гравитационными силами и величина T, не оказывается более нулевой. Таким образом, полевое уравнение для h
и уравнение движения вещества оказываются несовместными; эти уравнение не допускают одновременных решений. В этом состоит проблема непротиворечивости (линейной теории).

Используя требования того, что полевое уравнение удовлетворяется тензором h совместно с уравнением движения материи, Фейнман сделал вывод о том, что нелинейные поправки более высокого порядка должны быть добавлены к действию F. Требование непротиворечивости может быть облачено в форму принципа инвариантности, которому удовлетворяет действие, (с учётом этого принципа действие есть инвариант при общих координатных преобразованиях). После этого фейнмановский анализ стал довольно общепринятым и привёл к заключению о том, что достаточно общее согласованное полевое уравнение, которое включает в себя не более двух производных, есть уравнение Эйнштейна (с космологической постоянной).

Результирующие нелинейные поправки имеют приятную физическую интерпретацию. Без этих поправок гравитация не имеет связи сама с собой. Когда нелинейные поправки включаются в рассмотрение, источник для гравитационного поля (как он рассматривается в плоском пространстве-времени Минковского) есть полный тензор энергии-импульса, включающий вклад, обусловленный собственно гравитационным полем. Другими словами, удовлетворяется (сильный) принцип эквивалентности. Закон сохранения, удовлетворяемый энергией-импульсом вещества, становится эйнштейновским ковариантным законом, T;=0, который в сущности допускает обмен энергией и импульсом между веществом и гравитацией.

Мы знаем из фейнмановских комментариев, сделанных в 1957 году на конференции в Чапел Хилл [DeWi 57], что уже тогда он работал над вычислениями, описанными в лекциях 2-6. Мюррей Гелл-Манн сообщал [Gell 89], что Фейнман и он обсуждали различные вопросы квантовой гравитации в течении рождественских каникул в 1954 - 55 годах, и что уже тогда Фейнман достиг ”значительного прогресса” в этой области.

Требование того, что единственная разумная теория взаимодействующего безмассового поля спина 2 является по существу общей теорией относительности (или хорошо аппроксимируется общей теорией относительности в низкоэнергетическом пределе), довольно часто высказывается и сегодня. (Например, доказывается, что так как теория суперструн содержит безмассовые частицы спина 2, это может быть теория гравитации). Фактически, Фейнман не был самым первым, кто высказал это требование.

Полевое уравнение для свободного безмассового поля спина 2 было выписано Фиртцем и Паули в 1939 году [FiPa 39]. С того времени идея рассмотрения эйнштейновской гравитации, как теории поля спина 2 в плоском пространстве, изредка встречалась в литературе. Тем не менее, насколько мы знаем, первая опубликованная попытка вывести

нелинейные связи в теории Эйнштейна в рамках такого подхода появилась в работе Сурая Гупты в 1954 году [Gupt 54]. Гупта заметил, что действие в теории должно подчиняться нетривиальному условию непротиворечивости, которое удовлетворяется в общей теории относительности. Тем не менее, он не привёл никакого детального аргумента в пользу единственности полевого уравнения Эйнштейна.

Грубо говоря, аргумент Гупты состоит в следующем. Мы хотим построить теорию, в которой ”источник”, связанный с безмассовым полем спина 2, есть тензор энергии-импульса, включающий энергию-импульс самого поля спина 2. Если выбрать источник поля таким образом, что он есть тензор энергии-импульса 2T

теории свободного поля (которая квадратична по h), то связь этого источника с тензором h приводит к появлению кубического члена в лагранжиане. Из этого кубического члена в лагранжиане может быть выведен соответствующий кубический член 3T в тензоре энергии-импульса, который тогда включается в источник. Этим порождается член четвёртого порядка 4T и так далее. Эта итерационная процедура порождает бесконечные ряды, которые могут быть просуммированы для того, чтобы получить полные нелинейные уравнения Эйнштейна. Гупта кратко описал эту процедуру, но на самом деле не довёл её до завершения. Первая полная (и особенно элегантная) версия была опубликована Дезером в 1970 году [Dese 70]. Дезер также заметил, что теория Янга-Миллса может быть выведена, исходя из подобного подхода.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука